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I) Étude d’une application linéaire et application à une suite récurrente.
Un K- espace vectoriel E de dimension 3 est rapporté à la base 
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. On considère l’endomorphisme f de E dont la matrice dans la base B est 
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On note 
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1) On donne 
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 de coordonnées 
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 dans B ; calculer les coordonnées 
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  en fonction de x, y, z. Déterminer 
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  (équations cartésiennes + base) ; quelle est donc la dimension de  
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2) Déterminer une base C de G (justifier) ainsi que son équation cartésienne. Vérifier que F et G sont supplémentaires.

3) Enoncer in extenso le théorème du cours permettant d’affirmer que 
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 est bijective. Déterminer la matrice de g dans la base C .

4) Calculer les coordonnées 
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  en fonction de x, y, z  et en déduire que si 
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 appartient à G, alors 
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5) Si 
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 se décompose en 
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que vaut 
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 ? Quelle est donc la nature géométrique de ​ 
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6) Soit p un entier naturel ; pour 
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7) En écrivant les valeurs obtenues de 
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 obtenues dans 6) pour chacun des vecteurs des bases de F et G déduire les expressions de 
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calculer les coordonnées 
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8) A,B,C jouent au « jeu » suivant : A dit un nombre  (disons 1), B dit un autre nombre (disons 2), C dit un troisième nombre (disons 3) (tour de table 0).

Ensuite, à chaque tour de table, chacun doit dire la différence des nombres dits par les deux autres au tour de table précédent (A dit B-C, B dit C-A, C dit A-B).


a) Si 
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 sont les nombres dits par A,B,C au n-ième tour de table, démontrer que si l’on pose 
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b) Au dixième tour de table, que dirons respectivement A,B,C s’ils n’ont pas fait d’erreur ?

II) Exercice de base sur les fonctions de classe Dk  , Ck. 

Soit f la fonction de variable réelle définie par 
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1) Prolonger f par continuité à droite en 0 ; le prolongement sera toujours noté f.

2) Montrer que f possède un développement limité polynomial à droite en 0 à tout ordre.

Quelle information peut-on en tirer sur la classe Dk  , Ck de f à droite en 0 ?

3)  En déduire l’allure de la courbe de f au voisinage à droite de 0 en indiquant bien la tangente.

4) Montrer que f est deux fois dérivable à droite en 0.

5)  En fait un raisonnement du niveau spé permettra de démontrer que f est infiniment dérivable à droite en 0.  Admettant ceci, donner la valeur de 
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6) Soit g la fonction de variable réelle définie par 
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 est la fonction de Dirichlet, prolongée par 
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 . Montrer que g admet un développement limité polynomial à tout ordre à droite en 0. Quelle est sa classe de dérivation à droite en 0 ?
III) Le taux d’accroissement du taux d’accroissement du taux ....

Le but de cet exercice est de démontrer que le taux d’accroissement n-ième tend vers la dérivée n-ième.

On pose E =
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Attention : L’argument de l’application 
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 est une fonction f, pas un nombre f(x)... L’écriture 
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 n’a donc aucun sens. Par contre, l’écriture 
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Comme d’habitude 

 désigne la composée de l’opérateur 

 n fois par lui-même ;

 f est un élément de E.

1) Calculer pour x réel 
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2) Montrer à l’aide de la formule de Taylor-Young que 
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3) Conjecturer une formule pour le développement de 
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 et la démontrer par récurrence.

4) Vérifier que 
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5) Montrer par récurrence que l’énoncé 
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est vrai pour tout 
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Indication : appliquer l’hypothèse de récurrence à 

 et utiliser le théorème des accroissements finis.

6) En déduire que pour n et x fixés :


[image: image59.wmf](

)

0

0

1

(1)(())()

n

n

k

n

u

k

n

fxnkufx

k

u

=

æö

-+-®

ç÷

èø

å

a

.

7) 
a) Déterminer par la méthode du 6) puis par les développements limités :
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b) Même chose pour 
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 (penser au logarithme).

IV) Matrices.

NOTA : ce problème est inspiré de la dernière partie de l'énoncé de Mines Ponts, Math 2 2010.

0) Quel est le nombre 
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 de grilles de mots croisés 
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 ayant exactement une case noire dans chaque ligne et chaque colonne ?

Au lieu de grilles de mots croisés, considérons la famille F  des 
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), ayant exactement un 1 dans chaque ligne et dans chaque colonne, tous les autres coefficients étant nuls (matrices mises dans un ordre quelconque) ; le but de ce problème est de déterminer le rang 
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1) Déterminer 
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2) Donner, d’après le cours, deux majorants de 
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3) a) Soit E l'espace vectoriel formé des matrices de 
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 dont la somme des vecteurs lignes est nulle, ainsi que la somme des vecteurs colonnes. Déterminer la forme générale des matrices de E. En déduire une base de E, et que sa dimension est égale à 
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3) b) Désignons par 
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 le rang de la famille G formée des différences de 2 matrices de la famille F ; déduire de 3) a) une majoration de 
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4) a) Montrer que pour tout k et l  vérifiant
[image: image75.wmf]2

2

kn

ln

££

ì

í

££

î

,  la matrice 
[image: image76.wmf]1111

klklkl

AEEEE

=-++-

 appartient à G  (la matrice 
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  b) En déduire la valeur de 
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5) Soit F l’espace vectoriel des matrices semi-magiques (dont toutes les lignes et colonnes ont une somme de termes identique) ; montrer que 
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6) En déduire que 
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, ainsi qu’une base de F formée de matrices de la famille F.

Nota : le problème de Mines-Ponts traitait des matrices ayant deux 1 dans chaque ligne et dans chaque colonne, dont le dénombrement est bien plus difficile, mais dont la détermination du rang est très similaire.
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