PCSI                TP MAPLE 8 : PROCÉDURES RÉCURSIVES

Une procédure récursive est une procédure qui fait appel à elle-même.
Exemple classique : une suite récurrente du type 
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 se programme en :

 u:=n-> f(u(n-1)): u(0):=a:
ou  u:=proc(n) f(u(n-1)) end: u(0):=a:
ou  u:=proc(n) if n=0 then a else f(u(n-1)) fi end:
ou  u:=n-> if n=0 then a else f(u(n-1)) fi:
1) Programmer la factorielle.

2) Programmer la suite de Fibonacci (F(0) = 0, F(1) = 1, F(n) = F(n -1) + F(n - 2)).

Demander > trace(F): F(4): pour comprendre le fonctionnement de F. Réécrire F en ajoutant « option remember » (qui permet de mémoriser toute valeur de F déjà calculée), et comparer avec la procédure simple.

3) L’algorithme d’Euclide.

Principe : pgcd(a, b) = pgcd(b, a mod b)  (a mod b étant le reste de la division de a par b)


a) Justifier cette propriété.


b) Écrire une procédure récursive pgcd utilisant cet algorithme.

4) Écrire une procédure récursive  maximum:=proc(L,n) qui, L étant une liste de réels et n un entier, retourne le plus grand des nombres L[1], L[2], …,  L[n] ; vous avez droit au max de 2 nombres, mais pas à plus.

5) a) Que fait cette procédure  (x est un réel, et L une liste de réels) ? 

insertion:=proc(L,x)

local LL,k,q:

LL:=NULL:   for k to nops(L) while x > L[k] do  LL:= LL,L[k] od :

LL:=LL,x,seq(L[q],q=k..nops(L)): 

[LL]

end: 

5)b) Utiliser cette procédure pour programmer une fonction récursive tri:=proc(L,n) qui retourne la liste formée des nombres L[1], L[2], …,  L[n] mise dans l’ordre croissant.

Faire des essais avec des listes de nombres aléatoires comme [seq(rand(),k=1..500)]. Comparer les temps de calcul pour « tri » et pour « sort ».

6) a) Que fait cette procédure  (x est un objet quelconque et E impérativement un ensemble d’ensembles comme {{0,1},{1,4,7}}) ? 

 ajout:= proc(x,E)

local A,R;

R:=NULL; for A in E do R:=R,A union {x} od: 

{R}

end:

b) Utiliser cette procédure pour programmer une fonction récursive  P:=proc(E) qui retourne l’ensemble des parties de l’ensemble E. Pour cela, on utilisera le fait que si x est un élément quelconque de E, alors 
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 est l’ensemble des parties de 
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 auxquelles on a rajouté l’élément x.

7) La fonction d’Ackermann.

On définit 
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Écrire la procédure f. Que valent  
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8) (si avancé) :

a) que fait cette procédure  (L étant une liste quelconque )?

ajout :=(x,L)->seq([op(L[1..i]),x,op(L[i+1..nops(L)])], i=0..nops(L)):
b) Ecrire une fonction récursive permute :=proc(L) qui à la liste L fait correspondre une liste de toutes les listes obtenues par permutation à partir de L.
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