PCSI TP MAPLE 8 : PROCÉDURES RÉCURSIVES

Une procédure récursive est une procédure qui fait appel à elle-même.
Exemple classique : une suite récurrente du type
[image: image1.wmf](

)

0

1

nn

ua

ufu

-

=

ì

ï

í

=

ï

î

 se programme en :

 u:=n-> f(u(n-1)): u(0):=a:
ou u:=proc(n) f(u(n-1)) end: u(0):=a:
ou u:=proc(n) if n=0 then a else f(u(n-1)) fi end:
ou u:=n-> if n=0 then a else f(u(n-1)) fi:
1) Programmer la factorielle.

2) Programmer la suite de Fibonacci (F(0) = 0, F(1) = 1, F(n) = F(n -1) + F(n - 2)).

Demander > trace(F): F(4): pour comprendre le fonctionnement de F. Réécrire F en ajoutant « option remember » (qui permet de mémoriser toute valeur de F déjà calculée), et comparer avec la procédure simple.

3) L’algorithme d’Euclide.

Principe : pgcd(a, b) = pgcd(b, a mod b) (a mod b étant le reste de la division de a par b)

a) Justifier cette propriété.

b) Écrire une procédure récursive pgcd utilisant cet algorithme.

4) Écrire une procédure récursive maximum:=proc(L,n) qui, L étant une liste de réels et n un entier, retourne le plus grand des nombres L[1], L[2], …, L[n] ; vous avez droit au max de 2 nombres, mais pas à plus.

5) a) Que fait cette procédure (x est un réel, et L une liste de réels) ?

insertion:=proc(L,x)

local LL,k,q:

LL:=NULL: for k to nops(L) while x > L[k] do LL:= LL,L[k] od :

LL:=LL,x,seq(L[q],q=k..nops(L)):

[LL]

end:

5)b) Utiliser cette procédure pour programmer une fonction récursive tri:=proc(L,n) qui retourne la liste formée des nombres L[1], L[2], …, L[n] mise dans l’ordre croissant.

Faire des essais avec des listes de nombres aléatoires comme [seq(rand(),k=1..500)]. Comparer les temps de calcul pour « tri » et pour « sort ».

6) a) Que fait cette procédure (x est un objet quelconque et E impérativement un ensemble d’ensembles comme {{0,1},{1,4,7}}) ?

 ajout:= proc(x,E)

local A,R;

R:=NULL; for A in E do R:=R,A union {x} od:

{R}

end:

b) Utiliser cette procédure pour programmer une fonction récursive P:=proc(E) qui retourne l’ensemble des parties de l’ensemble E. Pour cela, on utilisera le fait que si x est un élément quelconque de E, alors
[image: image2.wmf](

)

(

)

(

)

\{}\{}

x

PEPExPEx

=È

 où
[image: image3.wmf](

)

\{}

x

PEx

 est l’ensemble des parties de
[image: image4.wmf]\{}

Ex

 auxquelles on a rajouté l’élément x.

7) La fonction d’Ackermann.

On définit
[image: image5.wmf](

)

,,

fabn

 pour
[image: image6.wmf]*

,,

abn

Î

N

 par

[image: image7.wmf](

)

(

)

,,1;,1, pour 2

fababfanan

=+=³

.

[image: image8.wmf](

)

(

)

(

)

,,,,1,,1 pour ,2

fabnfafabnnnb

=--³

Écrire la procédure f. Que valent
[image: image9.wmf](

)

(

)

(

)

(

)

(

)

,,2,,,3,,,4,2,2,,3,3,5

fabfabfabfnf

 ?

8) (si avancé) :

a) que fait cette procédure (L étant une liste quelconque)?

ajout :=(x,L)->seq([op(L[1..i]),x,op(L[i+1..nops(L)])], i=0..nops(L)):
b) Ecrire une fonction récursive permute :=proc(L) qui à la liste L fait correspondre une liste de toutes les listes obtenues par permutation à partir de L.

_1174587658.unknown

_1174587815.unknown

_1174587927.unknown

_1305202458.unknown

_1174587841.unknown

_1174587764.unknown

_1174587566.unknown

_1174587579.unknown

_1174563492.unknown

