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IV) ARITHMÉTIQUE.
1) Division euclidienne.

a) Théorème de la division euclidienne :

∀ (a, b) ∈ Z×N∗ ∃! (q, r) ∈ Z2 / a = bq + r avec 0 � r � b− 1.

q est le quotient de la division euclidienne de a par b, noté quotient(a, b) (pour python : a//b).
r est le reste de la division euclidienne de a par b, noté reste(a, b) (pour python : a % b)
D1

REM : en fait q =
�a
b

�
et r = b

�a
b

�
= b.FRAC

�a
b

�
.

b) Application à la forme générale des sous-groupes de Z.

TH : les sous-groupes additifs de Z sont les parties de la forme aZ avec a entier naturel.
D2

2) Systèmes de numération.
a) Définitions.

Théorème de la décomposition d’un entier naturel en base b (dite binaire si b = 2, décimale si b = 10, hexadécimale si
b = 16):

∀ (a, b) ∈ N∗ ×N∗\{1} ∃!n ∈ N ∃! (r0, r1, ..., rn) ∈ [|0, b− 1|]n+1 /

a = r0 + r1b+ r2b
2 + ...+ rnb

n =
n�

k=0

rkb
k avec rn 
= 0

Notations : a =
n�

k=0

rkbk =
base b

rnrn−1...r1r0 = (rnrn−1...r1r0)b ; les rk sont les ”chiffres” de a en base b.

D3

REM 1 : ce théorème n’est autre que le théorème de la division euclidienne itéré ; en effet la décomposition de a en base
b s’obtient par l’algorithme : �

r0 = reste (a, b)
q0 = quotient (a, b)�
r1 = reste (q0, b)
q1 = quotient (q0, b)

...�
rk = reste (qk−1, b)
qk = quotient (qk−1, b)

...�
rn = reste (qn−1, b)
qn = quotient (qn−1, b) = 0

REM 2 : en base 2, cet algorithme s’écrit plus simplement sous la forme :
	
r0 = 0 si a est pair, 1 s’il est impair

q0 =
�a
2

�

...	
rk = 0 si qk−1 est pair, 1 s’il est impair

qk =
�qk−1
2

�

...	
rn = 0 si qn−1 est pair, 1 s’il est impair

qn =
�qn−1
2

�
= 0

PROP : le nombre n de la décomposition ci-dessus est égal à [logb (a)] ; le nombre de chiffres de la décomposition en base
b de a vaut donc ⌊logb (a)⌋+ 1.
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D4

b) Une application de la décomposition binaire : la multiplication égyptienne (ou éthiopienne) et l’exponentiation rapide.

La multiplication égyptienne des entiers > 0 a = a0 et b = b0 consiste à effectuer l’algorithme :
	
ak+1 =

�ak
2

�

bk+1 = 2bk

jusqu’à obtenir an+1 = 0 ; si l’on pose alors ck =
�
bk si ak est impair
0 si ak est pair

, on a alors :

ab =
n�

k=0

ck

Explication : si a =
base 2

rnrn−1...r1r0 =
n�

k=0

rk2
k est la décomposition binaire de a, on a en fait ck = rkbk, donc

ab =
n�

k=0

rk2kb =
n�

k=0

rkbk =
n�

k=0

ck

Exemple E1
L’exponentiation rapide de l’entier > 0 : b = b0 par l’entier > 0 a = a0 consiste à effectuer l’algorithme :

	
ak+1 =


ak
2

�

bk+1 = b
2
k

jusqu’à obtenir an+1 = 0 ; si l’on pose alors ck =
�
bk si ak est impair
1 si ak est pair

, on alors :

ba =
n�

k=0

ck

Explication : si a =
base 2

rnrn−1...r1r0 = est la décomposition binaire de a, on a en fait ck = b
rk
k , donc

ba = b

�
n�

k=0

rk2
k

�

=
n�

k=0

brk2
k

=
n�

k=0

�
b2

k
�rk

=
n�

k=0

brkk =
n�

k=0

ck

Exemple E2

Le nom de cet algorithme vient de ce que dans une exponentiation normale de b par a, on effectue environ amultiplications,
tandis que dans l’exponentiation rapide, on effectue environ ⌊log2 (a)⌋ élévations au carrés et au plus ⌊log2 (a)⌋multiplications,
et que

2 ⌊log2 (a)⌋ ≪
a→+∞

a

3) Arithmétique modulaire : congruences.
a) Généralités.

Rappels : si (a, b, n) ∈ Z2 ×N∗ a ≡ b [n] (ou modn)⇔ n| (b− a)⇔ ∃k ∈ Z / b = a+ nk
On a donc la relation très utile :

a|b⇔ b ≡ 0 [a]

PROP : on peut aussi dire : a ≡ b modn⇔ reste(a, n) = reste(b, n) .
D5

PROP : en termes de congruences, le théorème de la division euclidienne peut s’énoncer :
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tout entier a est congru modulo un entier b > 0 à un unique entier r appartenant à [|0, b− 1|]
Cela revient exactement à dire qu’il y a b classes d’équivalence modulo b : bZ, bZ+ 1, ..., bZ+ (b− 1) .
Ce reste r de la division de a par b s’appelle aussi le "résidu modulo b de a".

b) Compatibilité des congruences avec l’addition et la multiplication.

TH : si (a, b, c, d, n) ∈ Z4 ×N∗et
�
a ≡ b [n]
c ≡ d [n] alors a+ c ≡ b+ d [n] et ac ≡ bd [n] ; donc am ≡ bm [n] pour tout naturel

m.
D6

Applications A1 :
- an − bn est divisible par a− b, sans invoquer la formule de Bernoulli.
- 26n+1 + 32(n+1) est divisible par 11 pour tout naturel n.
- 3.52n+1 + 23n+1 est divisible par 17 pour tout naturel n.
- une somme de deux carrés ne peut pas être de la forme 4k − 1.

c) Applications aux critères de divisibilité en base 10.

PROP : un entier naturel est congru
- à son dernier chiffre en base 10, modulo 2 et 5.
- au nombre formé de ses deux derniers chiffres en base 10, modulo 4 et 25.
- à la somme des ses chiffres en base 10, modulo 3 et 9.

- à la somme alternée de ses chiffres
n�

k=0

(−1)k rk en base 10, modulo 11.

D7

3) Nombres premiers entre eux, PGCD, PPCM.
a) Nombres premiers entre eux.

Pour a entier relatif on note Da l’ensemble de ses diviseurs dans N.
DEF : deux entiers relatifs a et b sont dits premiers entre eux ssi leur seul diviseur commun dans N est 1 (i. e.

Da ∩Db = {1}).
Notation peu classique : a ⊥ b.

TH de Bézout ( 1730 - 1783) : a et b sont premiers entre eux si et seulement s’il existe deux entiers relatifs u et v tels
que au+ bv = 1.

D8 (application du théorème des sous-groupes de Z).

COROLLAIRE : TH de Gauss :
Si a divise bc et si a et b sont premiers entre eux, alors a divise c.

D9

Attention au faux théorème de Gauss : si a divise bc et si a ne divise pas b, alors a divise c !!!!!!
CORO du CORO : Si a et b sont premiers entre eux, et divisent chacun c, alors ab divise c.

D10

b) PGCD.

DEF : le PGCD de deux entiers relatifs non nuls a et b est leur plus grand diviseur commun dans N (i. e . plus grand
élément pour la relation d’ordre habituelle de Da ∩Db);

Notation : PGCD (a, b) ou a ∧ b.
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Pourquoi PGCD et non PGDC ? Peut-être un archaïsme plaçant les deux adjectifs avant le nom, ou une influence de
l’anglais : GCD (greatest common divisor).

PROP 1 : a et b sont premiers entre eux ssi leur PGCD est 1.

D11

TH : pour a, b, d entiers > 0, les énoncés suivants sont équivalents :
1) d = PGCD (a, b)
2) d divise a et b et a/d et b/d sont premiers entre eux.
3) aZ+ bZ = dZ (théorème de Bézout généralisé)
4) pour tout d′ > 0, d′divise a et b ssi d′divise d

D12

REM : 4) signifie donc qu’un entier divise deux nombres ss’il divise leur PGCD ( d | a et d | b ⇔ d| (a ∧ b))
par conséquent le PGCD est non seulement le plus grand diviseur commun pour la relation d’ordre usuelle mais aussi

pour la relation de divisibilité.

Autre façon de dire la même chose : le PGCD de a et b > 0 est la borne inférieure de {a, b} pour la relation de divisibilité
dans N.

Coro : on peut poser a ∧ 0 = 0 ∧ a = a.

c) Algorithme d’Euclide et application à l’obtention des coefficients de Bézout.

α) Principe de l’algorithme d’Euclide basique (enseigné au collège), ou anthyphérèse :

PGCD (a, b) = PGCD (min(a, b), |a− b|)

Exemple : PGCD(42, 18) =PGCD(18, 24) = PGCD(18, 6) =PGCD(6, 12) = PGCD(6, 6) = 6

PROP : si on pose
�
a0 = a
b0 = b

et
�
an+1 = min(an, bn)
bn+1 = |an − bn| on arrive toujours en un temps fini à un couple (an, bn) où

an = bn, d’où l’obtention du PGCD du couple de départ.
Clé de la démo : si an 
= bn et sont 
= 0, max(an+1, bn+1) < max (an, bn) .
D13

β) Principe de l’algorithme d’Euclide classique : PGCD(a, b) =PGCD(b, reste(a, b)) .

Exemple : PGCD(42, 18) =PGCD(18, 6) =PGCD(6, 0) = 6

PROP : si on pose
�
a0 = a
b0 = b

et
�

an+1 = bn
bn+1 = reste (an, bn)

on arrive toujours en un temps fini à un couple (an, bn) où bn

est nul, d’où l’obtention du PGCD du couple de départ.
D14

γ) Obtention des coefficients de Bézout.

Exemple : on cherche deux entiers u et v tels que 71u+ 17v = PGCD(71, 17).
On considère :
X1 = (1, 0, 71) et X2 = (0, 1, 17) ; le quotient de 71 par 17 étant 4, on calcule
X3 = X1 − 4X2 = (1,−4, 3) ; le quotient de 17 par 3 étant 5, on calcule
X4 = X2 − 5X3 = (−5, 21, 2) ; le quotient de 3 par 2 étant 1, on calcule

X5 = X3 −X4 = (6,−25, 1) : 1 divisant 2, on s’arrête.

Résultat : le PGCD de 71 et 17 est 1 et 1 = 6.71− 25.17 ; on a obtenu les coefficients de Bézout du couple (71, 17) .

4



COURS MPSI A5. ARITHMÉTIQUE R. FERRÉOL 16/17

Explication : cela vient du

LEMME : si a et b sont deux entiers, toute combinaison linéaire à coefficients entiers de triplets du type (u, v, w) vérifiant
au+ bv = w donne un triplet vérifiant la même relation.

D15
d) PPCM.
DEF : le PPCM de deux entiers relatifs non nuls a et b est leur plus petit multiple commun dans N∗ (i. e . plus petit

élément pour la relation d’ordre habituelle de |a|N∗ ∩ |b|N∗).

Notation : PPCM(a, b) ou a ∨ b.
TH : a) pour a, b,m entiers > 0, les énoncés suivants sont équivalents :

1) m =PPCM(a, b)
2) mZ = aZ ∩ bZ
3) Pour tout entier m′, m′ est mutiple de a et b ssi m′ est multiple de m

D 16

REM : une autre façon de dire 3) est : le PPCM de a et b > 0 est la borne supérieure de {a, b} pour la relation de
divisibilité dans N.

Coro : on peut poser a ∨ 0 = 0 ∨ a = 0.
PROP : pour tous a, b > 0

PGCD(a, b)×PPCM(a, b) = ab

D17
4) Nombres premiers.

a) Généralités.
DEF : p ∈ N est dit premier s’il possède exactement deux diviseurs dans N, autrement dit s’il est différent de 1 et n’est

divisible dans N que par 1 et par lui-même. Un naturel � 2 non premier est dit composé. On notera P l’ensemble des nombres
premiers.

PROP1 : n ∈ N est composé ⇔ ∃d, d′ ∈ N / n = dd′ avec 2 � d, d′ � n− 1.
D18

PROP2 : Un entier p � 2 est premier ss’il est premier avec tout entier qu’il ne divise pas.

PROP3 : tout entier � 2 est divisible par au moins un nombre premier.

THÉORÈME 1 : P est infini (voir raisonnements par l’absurde).

b) Détermination des nombres premiers : critère et crible d’Eratosthène (-276 , -184).

Lemme : si n = dd′ (avec n, d, d′ ∈ N∗) alors d � √n⇔ d′ �
√
n .

THÉORÈME 2 (critère d’Ératosthène, pour déterminer si un entier donné est premier) :
un entier n � 2 est premier si et seulement s’il ne possède aucun diviseur premier dans [2,

√
n] .

D19

THÉORÈME 3 (algorithme du crible d’Ératosthène, pour déterminer la liste des nombres premiers entre 1 et n) :
On part de la liste L1 = (2, 3, .., n) et la liste Lk étant définie, on définit la liste Lk+1 comme la liste obtenue en supprimant

dans Lk tous les multiples de son k−ième terme en començant par le carré de ce terme.
Alors, lorsqu’il n’y a plus de terme à supprimer, autrement dit, pour la dernière liste Lk dont le k − 1ième terme est

�
√
n , la liste restante est la liste croissante des nombres premiers compris entre 1 et n.
D20

REM : le nombre d’étapes du crible d’Ératosthène est égal au nombre de nombres premiers entre 1 et
√
n ; on peut

démontrer que ce nombre est ∼ 2
√
n

lnn
, ce qui explique pourquoi cet algorithme est très performant (cf info).
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c) Décomposition en produit de facteurs premiers.

THÉOREME 4 : tout naturel � 2 se décompose de manière unique en produit de nombres premiers ; l’unicité signifie
précisément que si un même nombre est produit des éléments de 2 listes croissantes de nombres premiers, alors ces listes
sont égales.

Existence démontrée dans le cours sur les récurrences fortes.
Unicité :

LEMME : si un nombre premier divise un produit de nombres premiers, il est égal à l’un d’entre eux.
D 21
DEF : un naturel a � 1 et un nombre premier p étant donnés ; on appelle valuation en p de a le nombre αp (a) de fois

que p intervient dans la décomposition de a en produit de facteurs premiers ; notation : αp (a) ; on a donc

a =



p∈P

pαp(a)

(on considère que le produit d’une infinité de ”1” est égal à 1).

PROP : pour a, b, c ∈ N∗ on a :

a) a = b⇔ ∀p ∈ P αp (a) = αp (b)
b) c = ab⇔ ∀p ∈ P αp(c) = αp (a) + αp (b)
c) a divise b⇔ ∀p ∈ P αp (a) � αp (b)
d) d = PGCD (a, b)⇔ ∀p ∈ P αp(d) = min(αp (a) , αp (b))
e) m =PPCM (a, b)⇔ ∀p ∈ P αp(m) = max(αp (a) , αp (b))
f) a est un carré (parfait)⇔ ∀p ∈ P αp (a) est pair
f’) a est une puissance n-ième exacte ⇔ ∀p ∈ P n |αp (a)

D22
CORO (de f)) : si n est un naturel qui n’est pas un carré,

√
n est irrationnel.

CORO (de f’)) : .....
D23
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