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IV) ARITHMETIQUE.
1) Division euclidienne.

a) Théoréme de la division euclidienne :

V(a,b) € Z x N* EI!(q,T)€Z2/avecO<r<b—1.

q est le quotient de la division euclidienne de a par b, noté quotient(a, b) (pour python : a//b).
r est le reste de la division euclidienne de a par b, noté reste(a, b) (pour python : a % b)
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a

REM:enfaitq:[gJ etr:b{b

- } =bFRAC (%) .

b) Application a la forme générale des sous-groupes de Z.

TH : les sous-groupes additifs de Z sont les parties de la forme aZ avec a entier naturel.
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2) Systémes de numeération.
a) Définitions.
Théoréme de la décomposition d’un entier naturel en base b (dite binaire si b = 2, décimale si b = 10, hexadécimale si
b=16):

V(a,b) € N* x N*\{1} In e N I (rg,r1,...,r) € [|0,b—1]"T"/

a=ro+7r1b+712b? + ...+ rpb" = > rpb* |avec r, #£0
k=0

n base b
Notations : a = Zrkbk = Tplp—1..T170 = ("nTn—1...T170)} ; les 74 sont les "chiffres” de a en base b.

k=0
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REM 1 : ce théoréme n’est autre que le théoréme de la division euclidienne itéré ; en effet la décomposition de a en base
b s’obtient par 'algorithme :

ro = reste (a,b)
go = quotient (a, b)

r1 = reste (qo, b)
g1 = quotient (go, b)

{ ry, = reste (qx—1,0)
qr = quotient (qx—1,d)

{ Ty = reste (¢n—1,b)
¢n = quotient (g,—1,b) =0

REM 2 : en base 2, cet algorithme s’écrit plus simplement sous la forme :

{ ro = 0 si a est pair, 1 s’il est impair

S
_ E‘
qo = 5

{ 7, = 0 si gx—1 est pair, 1 s’il est impair

_ qk—1 ’
qk N

dn—1 ’
= =0
dn 9

{ rn = 0 si g,_1 est pair, 1 s’il est impair

PROP : le nombre n de la décomposition ci-dessus est égal a [log, (a)] ; le nombre de chiffres de la décomposition en base
b de a vaut donc |log, (a)] + 1.
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b) Une application de la décomposition binaire : la multiplication égyptienne (ou éthiopienne) et I’exponentiation rapide.

La multiplication égyptienne des entiers > 0 a = ag et b = by consiste a effectuer 'algorithme :

(=5

b1 = 2by

. . . . bi si ay, est impair
jusqu’a obtenir a,4+1 = 0 ; si 'on pose alors ¢, = . b ,on a alors :

0 si ay est pair

n
ab= > "¢
k=0
C . ____base2 & o o .
Explication : si a =T,T,—1..T170 = »_ 72" est la décomposition binaire de a, on a en fait ¢ = riby, donc
k=0

ab= Y120 = S rpbp = Y
k=0 k=0 k=0

Exemple E1
I’exponentiation rapide de l'entier > 0 : b = by par Uentier > 0 a = ag consiste a effectuer I'algorithme :

fmmls

b1 = b3

by, si ax est impair

. . on alors :
1 si ag, est pair ’

jusqu’a obtenir a,4+1 = 0 ; si on pose alors ¢, = {

n
ba = H Ck
k=0

base 2 .
Explication : si @ = T,,7p,—1...T170 = est la décomposition binaire de a, on a en fait ¢, = b;*, donc

. b(é{),‘kzk) _ ﬁ pre2t _ ﬁ (bzk)Tk _ ﬁ b = ﬁ o
E=0 E=0 E=0

k=0

Exemple E2

Le nom de cet algorithme vient de ce que dans une exponentiation normale de b par a, on effectue environ ¢ multiplications,
tandis que dans I’exponentiation rapide, on effectue environ |log, (a)] élévations au carrés et au plus |log, (a) | multiplications,
et que

2[logy (a)] < a

a—-+00

3) Arithmétique modulaire : congruences.

a) Généralités.
Rappels : si (a,b,n) € Z? x N*
On a donc la relation trés utile :

a=b [n] (oumodn)=n|(b—a)<=3IkeEZ/b=a+nk

‘a|b<:>b50 [a]|

PROP : on peut aussi dire: a=b modn ¢>{ reste(a, n) = reste(b,n) ‘
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PROP : en termes de congruences, le théoréme de la division euclidienne peut s’énoncer :
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tout entier @ est congru modulo un entier b > 0 & un unique entier r appartenant a [|0,b — 1|]

Cela revient exactement a dire qu'’il y a b classes d’équivalence modulo b : bZ, bZ + 1, ..., bZ+ (b—1).
Ce reste r de la division de a par b s’appelle aussi le "résidu modulo b de a".

b) Compatibilité des congruences avec ’addition et la multiplication.

= b [n]
=d [n]

TH : si (a,b,¢,d,n) € Z* x N*et { Z alors a + c=b+d [n] et ac = bd [n] ; donc a™ = b™ [n] pour tout naturel
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Applications Al :
- a™ — b" est divisible par a — b, sans invoquer la formule de Bernoulli.
- 96041 4 32(n+1) ot divisible par 11 pour tout naturel n.
- 3.52nt1 4 923n+1 egt divisible par 17 pour tout naturel n.
- une somme de deux carrés ne peut pas étre de la forme 4k — 1.

¢) Applications aux critéres de divisibilité en base 10.

PROP : un entier naturel est congru
- & son dernier chiffre en base 10, modulo 2 et 5.
- au nombre formé de ses deux derniers chiffres en base 10, modulo 4 et 25.
- & la somme des ses chiffres en base 10, modulo 3 et 9.

3
- a la somme alternée de ses chiffres 3 (—=1)" 7, en base 10, modulo 11.
k=0
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3) Nombres premiers entre eux, PGCD, PPCM.

a) Nombres premiers entre eux.
Pour a entier relatif on note D, ’ensemble de ses diviseurs dans N.
DEF : deux entiers relatifs a et b sont dits premiers entre euz ssi leur seul diviseur commun dans N est 1 (i. e.

D,NDy,= {1})

Notation peu classique : a L b.

TH de Bézout ( 1730 - 1783) : a et b sont premiers entre eux si et seulement s’il existe deux entiers relatifs u et v tels

que au + bv = 1.
D8 (application du théoréme des sous-groupes de Z).

COROLLAIRE : TH de Gauss :
Si a divise bc et si a et b sont premiers entre eux, alors a divise c.

D9

CORO du CORO : Si a et b sont premiers entre eux, et divisent chacun ¢, alors ab divise c.
D10
b) PGCD.

DEF : le PGCD de deux entiers relatifs non nuls a et b est leur plus grand diviseur commun dans N (i. e . plus grand
élément pour la relation d’ordre habituelle de D, N Dy);

Notation : PGCD (a,b) ou a A b.
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Pourquoi PGCD et non PGDC ? Peut-étre un archaisme placant les deux adjectifs avant le nom, ou une influence de
langlais : GCD (greatest common divisor).

PROP 1 : a et b sont premiers entre eux ssi leur PGCD est 1.
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TH : pour a,b,d entiers > 0, les énoncés suivants sont équivalents :
1) d= PGCD (a,b)
2) d divise a et b et a/d et b/d sont premiers entre eux.
3) aZ + bZ = dZ (théoréme de Bézout généralisé)
4) pour tout d’ >0, d'divise a et b ssi d'divise d

D12

REM : 4) signifie donc qu’un entier divise deux nombres ss’il divise leur PGCD (d | aet d | b < d| (a A D))
par conséquent le PGCD est non seulement le plus grand diviseur commun pour la relation d’ordre usuelle mais aussi
pour la relation de divisibilité.

Autre fagon de dire la méme chose : le PGCD de a et b > 0 est la borne inférieure de {a, b} pour la relation de divisibilité
dans N.

Coro : on peut poser aAO=0Aa = a.
¢) Algorithme d’Euclide et application a l'obtention des coefficients de Bézout.
«) Principe de I’algorithme d’Euclide basique (enseigné au collége), ou anthyphérese :

PGCD (a,b) = PGCD (min(a, b), |a — b|)

Exemple : | PGCD(42, 18) |=PGCD(18, 24) = PGCD(18, 6) [=PGCD(6, 12) = PGCD(6,6) |= 6

. ag=a a = min(ay, b . . . N
PROP : si on pose 0 et il (an, bn) on arrive toujours en un temps fini & un couple (ay,b,) ou
bO =b bn+1 = |an - bn|

an = by, d’out I'obtention du PGCD du couple de départ.
Clé de la démo : si a,, # by, et sont # 0, max(an4+1,bnt1) < max (an, by) -
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B) Principe de I'algorithme d’Euclide classique : PGCD(a,b) =PGCD(b, reste(a, b)) .

Exemple : PGCD(42, 18) =PGCD(18,6) =PGCD(6,0) = 6

o ag =a Gpt1 = by . . .. R
PROP : si on pose bo = b et byt = reste (an, bn) on arrive toujours en un temps fini & un couple (ay,, b,) ou by,

est nul, d’out 'obtention du PGCD du couple de départ.
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) Obtention des coefficients de Bézout.
Exemple : on cherche deux entiers u et v tels que 71lu 4+ 17v = PGCD(71, 17).
On considére :
X1 =1(1,0,71) et X5 =(0,1,17) ; le quotient de 71 par 17 étant 4, on calcule
X3 = X1 —4X2 = (1,—4,3) ; le quotient de 17 par 3 étant 5, on calcule
Xy =Xy —5X3 =(-5,21,2) ; le quotient de 3 par 2 étant 1, on calcule
X5 = X3 — X4 =(6,-25,1) : 1 divisant 2, on s’arréte.

Reésultat : le PGCD de 71 et 17 est 1 et 1 =6.71 —25.17 ; on a obtenu les coefficients de Bézout du couple (71,17).
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Explication : cela vient du

LEMME : si a et b sont deux entiers, toute combinaison linéaire & coefficients entiers de triplets du type (u, v, w) vérifiant
au + bv = w donne un triplet vérifiant la méme relation.
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d) PPCM.

DEF : le PPCM de deux entiers relatifs non nuls a et b est leur plus petit multiple commun dans N* (i. e . plus petit
élément pour la relation d’ordre habituelle de |a|N* N |b|N*).

Notation : PPCM(a,b) ou a V b.
TH : a) pour a, b, m entiers > 0, les énoncés suivants sont équivalents :
1) m =PPCM(a, b)
2) mZ = aZNbZ
3) Pour tout entier m’, m' est mutiple de a et b ssi m' est multiple de m
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REM : une autre fagon de dire 3) est : le PPCM de a et b > 0 est la borne supérieure de {a,b} pour la relation de
divisibilité dans N.

Coro : on peut poser a V0O =0V a=0.
PROP : pour tous a,b >0

| PGCD(a, b)x PPCM(a, b) = ab|
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4) Nombres premiers.
a) Généralités.
DEF : p € N est dit premier s’il posséde exactement deux diviseurs dans N, autrement dit s’il est différent de 1 et n’est
divisible dans N que par 1 et par lui-méme. Un naturel > 2 non premier est dit composé. On notera P ’ensemble des nombres
premiers.

PROP1 : n € N est composé < 3d,d € N/ n=dd avec 2 < d,d <n-—1.
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PROP2 : Un entier p > 2 est premier ss’il est premier avec tout entier qu’il ne divise pas.
PROP3 : tout entier > 2 est divisible par au moins un nombre premier.
THEOREME 1 : P est infini (voir raisonnements par 1’absurde).

b) Détermination des nombres premiers : critére et crible d’Eratosthéne (-276 , -184).
Lemme : sin = dd' (avec n,d,d € N*) alors ‘ d<yned > \/ﬁ‘
THEOREME 2 (critére d’Eratosthéne, pour déterminer si un entier donné est premier) :

un entier n > 2 est premier si et seulement s'il ne posséde aucun diviseur premier dans [2,/n].
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THEOREME 3 (algorithme du crible d’Eratostheéne, pour déterminer la liste des nombres premiers entre 1 et n) :

On part de la liste Ly = (2,3, ..,n) et la liste Ly, étant définie, on définit la liste Li1 comme la liste obtenue en supprimant
dans Lj tous les multiples de son k—iéme terme en comencgant par le carré de ce terme.

Alors, lorsqu’il n’y a plus de terme a supprimer, autrement dit, pour la derniére liste Ly dont le k — liéme terme est
< /n, la liste restante est la liste croissante des nombres premiers compris entre 1 et n.
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REM : le nombre d’étapes du crible d’Eratosthéne est égal au nombre de nombres premiers entre 1 et \/n ; on peut

n
démontrer que ce nombre est ~ 21£, ce qui explique pourquoi cet algorithme est trés performant (cf info).
nn
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¢) Décomposition en produit de facteurs premiers.

THEOREME 4 : tout naturel > 2 se décompose de maniére unique en produit de nombres premiers ; I'unicité signifie
précisément que si un méme nombre est produit des éléments de 2 listes croissantes de nombres premiers, alors ces listes
sont égales.

Existence démontrée dans le cours sur les récurrences fortes.

Unicité :

LEMME : si un nombre premier divise un produit de nombres premiers, il est égal & I'un d’entre eux.
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DEF : un naturel @ > 1 et un nombre premier p étant donnés ; on appelle valuation en p de a le nombre «, (a) de fois
que p intervient dans la décomposition de a en produit de facteurs premiers ; notation : «, (a) ; on a donc

a = Hpap(a)

p€eP
(on consideére que le produit d’une infinité de 71”7 est égal a 1).

PROP : pour a,b,c € N* on a :

a)a=bsVpePlPa,(a) =a, )

b) c=abe Vp e P ay(c) = oy (a) + oy, (b)

c) a divise b < Vp € P o, (a) < o, (D)

d) d = PGCD (a,b) & Vp € P a,(d) = min(ay, (a) , o, (b))
e) m =PPCM (a,b) & Vp € P a,(m) = max(ay, (a) , oy (D))
f) a est un carré (parfait)< Vp € P oy, (a) est pair

f’) a est une puissance n-iéme exacte < Vp € P nla, (a)
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CORO (de f)) : sin est un naturel qui n’est pas un carré, \/n est irrationnel.

CORO (de ) : .....
D23



