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I) FONCTIONS VECTORIELLES.

P plan euclidien orienté rapporté à un repère orthonormé direct
(
O,
−→
i ,
−→
j
)
,
−→
P ensemble des vecteurs de P ,

−→
f fonction

de R vers
−→
P d’ensemble de définition D.

−→
f (t)

∣∣∣∣
x(t)
y(t)

/
(
−→
i ,
−→
j
) , t0 point adhérent à D,

−→
l

∣∣∣∣
a
b

/
(
−→
i ,
−→
j
) ∈

−→
P .

DEF :






lim
t→t0

−→
f (t) =

−→
l ⇔ lim

t→t0

∥∥∥
−→
f (t)−−→l

∥∥∥ = 0.

−→
f est continue en t0 ∈ D⇔ lim

t→t0

−→
f (t) =

−→
f (t0)

−→
f est dérivable en t0 ∈

◦

D ⇔ lim
t→t0

1

t− t0

(−→
f (t)−−→f (t0)

)
existe (

def
=
−→
f ′(t0))

Notation :
−→
f ′(t) =

d

dt

(−→
f (t)

)
.

PROP :




lim
t→t0

−→
f (t) =

−→
l ⇔ lim

t→t0
x(t) = a et lim

t→t0
y(t) = b

−→
f est continue en t0 ∈ D⇔ x et y sont continues en t0
−→
f est dérivable en t0 ∈

◦

D⇔ x et y sont dérivables en t0 et
−→
f ′(t0) = x′(t0)

−→
i + y′(t0)

−→
j

D1

PROPRIÉTÉS :






(−→
f +−→g

)′
=
−→
f ′ +−→g ′,

(
λ
−→
f
)′
= λ

−→
f ′

(−→
f . −→g

)′
=
−→
f ′.−→g +−→f .−→g ′

(
det

(−→
f , −→g

))′
= det

(−→
f ′ , −→g

)
+ det

(−→
f , −→g ′

)

(∥∥∥
−→
f
∥∥∥
2
)′
= 2

−→
f .
−→
f ′,

(∥∥∥
−→
f
∥∥∥
)′
=

−→
f∥∥∥
−→
f
∥∥∥

.
−→
f ′

D2

II) COURBES PARAMÉTRÉES.

M :






R→ P

t→M(t)

∣∣∣∣
x(t)
y(t)

d’ensemble de définition D = Dx ∩Dy.

(C) = {M(t) / t ∈ D}−→
f (t) =

−−→
OM(t)

DEF : (C) est la courbe associée à t �→M(t),et t �→M(t) est une paramétrisation de l’ensemble (C).

PROP : en faisant une confusion entre M,x, y variables et M,x, y fonctions :

M

∣∣∣∣
x
y

∈ (C)⇔ ∃t ∈ D M =M(t)

⇔ ∃t ∈ D

∣∣∣∣
x = x(t)
y = y(t)

DEF :

∣∣∣∣
x = x(t)
y = y(t)

est une représentation paramétrique de (C).

1



COURS MPSI 11. COURBES PLANES R. FERRÉOL 09/10

REMARQUE : une courbe de fonction, d’équation y = f(x) peut être paramétrée par M(t)

∣∣∣∣
t
f(t)

et a donc pour

représentation paramétrique :
∣∣∣∣
x = t
y = f(t)

AUTRES EXEMPLES : E1

PROP :
−→
f ′(t)

(

=
d
−−→
OM

dt

)

=
d
−−−→
O′M

dt
pour tout point O′ ; il est donc noté

d
−→
M

dt
.

D3

DEF :
−→
f ′(t) =

d
−→
M

dt
= x′(t)

−→
i +y′(t)

−→
j est le vecteur vitesse à l’instant t, noté −→v (t) ou −→v (M) (pratique mais dangereux).

DEF :

{
un point M est régulier ⇔−→v (M) 
= −→0
M est singulier (ou stationnaire)⇔−→v (M) =

−→
0

Si M est régulier, le vecteur tangent en M est
−→
T = ±

−→v (M)

‖−→v (M)‖ (en choisissant + ou - de sorte à éviter des valeurs

absolues) ; la droite passant par M et dirigée par
−→
T est la tangente à (C) en M ; et l’on définit la vitesse algébrique v(t)

par −→v (t) = v(t)
−→
T .

DEF :
−→
f ′′(t) =

d2
−→
M

dt2
= x′′(t)

−→
i + y′′(t)

−→
j est le vecteur accélération à l’instant t, noté −→a (t) ou −→a (M).

DEF : un point M est birégulier ⇔ (−→v (M),−→a (M)) est libre.

DEF : le vecteur normal
−→
N en M régulier est l’image de

−→
T dans la rotation d’angle π/2 ; le repère

(
M,
−→
T ,
−→
N
)
est appelé

le repère de Frénet en M .

On décompose alors l’accélération dans la base de Frénet
(−→
T ,
−→
N
)
: −→a = aT

−→
T +aN

−→
N ; aT et aN sont appelés accélérations

tangentielle et normale.

EXEMPLE : E2

Exercice : montrer que






‖−→v ‖ = cte⇔ v.aT = 0 (mouvement uniforme)
‖−→v ‖ ր ⇔ v.aT � 0 (mouvement accéléré)
‖−→v ‖ ց ⇔ v.aT � 0 (mouvement retardé)

III ÉTUDE D’UNE COURBE PARAMÉTRÉE.

1) Réduction de l’ensemble d’étude.

a) Changer t en t+ T.
Si M(t+T ) = F (M (t)) où F est une isométrie du plan, on n’étudiera la paramétrisation que sur [a, a+T ] ; pour obtenir

la courbe entière, on effectuera les transformations F k, k ∈ Z sur la portion de courbe obtenue.

Par exemple, si lorsque t → t + T,

{
x→ y
y → x

(soit x(t + T ) = y(t) et y(t + T ) = x(t)), on étudie sur [a, a + T ] ; on

effectuera une symétrie par rapport à la première bissectrice pour obtenir la courbe entière.

b) Changer t en −t.
Si M(−t) = F (M (t)) où F est une isométrie du plan, on n’étudiera la paramétrisation que sur l’ensemble d’étude

précédent ∩ R+ (ou ∩ R−) ; pour obtenir la courbe entière, on effectuera la transformation F sur la portion de courbe
correspondant à cet ensemble d’étude.

Exemple : E3
{

x = cos 2t
y = sin 3t
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c) Changer t en T − t (le cas précédent étant en fait un cas particulier).
Si M(T − t) = F (M (t)) où F est une isométrie du plan, on n’étudiera la paramétrisation que sur l’ensemble d’étude

précédent ∩ [T
2
,+∞[ (ou ∩ ]−∞,

T

2
]) ; pour obtenir la courbe entière, on effectuera la transformation F sur la portion de

courbe correspondant à cet ensemble d’étude.

Exemple : E4
{

x = cos t+ sin2 t
y = sin t+ cos2 t

d) Changer t en
1

t
.

Si M(1/t) = F (M (t)) où F est une isométrie du plan, on n’étudiera la paramétrisation que sur l’ensemble d’étude
précédent ∩ [ − 1, 1] (ou ∩ ]−∞,−1] ∪ [1,+∞[) ; pour obtenir la courbe entière, on effectuera la transformation F sur la
portion de courbe correspondant à cet ensemble d’étude.

Exemple : E5 (puntiforme) :






x =
2t

1 + t2

y =
2t

1− t2

L’ensemble d’étude final est celui obtenu en d) intersecté avec l’ensemble de définition.

2) Étude des deux fonctions t �→ x(t) et t �→ y(t) sur l’ensemble d’étude.

Présentation du tableau de variations :

Exemples : E3, E4, E5

3) Étude locale.

En M0

{
x0 = x(t0)
y0 = y(t0)

, si t = t0 + u, Taylor-Young donne :





x(t) = x0 + x′(t0)u+
x′′(t0)

2
u2 +

x′′′(t0)

6
u3 +

x(4)(t0)

24
u4 + o(u4)

y(t) = y0 + y′(t0)u+
y′′(t0)

2
u2 +

y′′′(t0)

6
u3 +

y(4)(t0)

24
u4 + o(u4)

soit, vectoriellement :
−−−→
M0M(t) = u −→v0 + u2

−→a0
2
+ u3

−→
b0
6
+ u4

−→c0
24
+−→o

(
u4
)

1er cas) le point M0 est birégulier ((−→v 0,−→a 0) est libre).
Le point M0 est un point ordinaire de la courbe.

−−−→
M0M(t) = u −→v0 + u2

−→a0
2
+−→o

(
u2
)

F1
2ème cas ) le point M0 est régulier (

−→v 0 
=
−→
0 ), mais non birégulier ((−→v 0,−→a 0) est lié), et

(−→v0,
−→
b0

)
est libre.

Le point M0 est un point d’inflexion.

−−−→
M0M(t) =

(
u+ λ

u2

2

)
−→v0 + u3

−→
b0
6
+−→o

(
u3
)
.

F2

REM 1 : pour obtenir ces points, on résout
∣∣∣∣
x′ (t) x′′ (t)
y′ (t) y′′ (t)

∣∣∣∣ = 0 et on regarde si
∣∣∣∣
x′ (t) x′′′ (t)
y′ (t) y′′′ (t)

∣∣∣∣ 
= 0.
REM 2 : Dans le cas d’une courbe y = f (x) , cela donne les conditions :

f ′′ (x) = 0, f ′′′ (x) 
= 0

REM 3 : comme
(
y′

x′

)′
=

∣∣∣∣
x′ x′′

y′ y′′

∣∣∣∣

x′2
, on peut remplacer la résolution de

∣∣∣∣
x′ (t) x′′ (t)
y′ (t) y′′ (t)

∣∣∣∣ = 0 par celle de
(
y′

x′

)′
(t) = 0,

souvent plus simple.
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3ème cas ) le point M0 est stationnaire (−→v 0 =
−→
0 ), mais

(−→a 0,
−→
b 0
)
est libre.

Le point M0 est un point de rebroussement de première espèce.
−−−→
M0M(t) = u2

−→a0
2
+ u3

−→
b0
6
+−→o

(
u3
)
.

F3

REM : pour obtenir ces points, on résout x′ (t) = y′ (t) = 0 et on regarde si
∣∣∣∣
x′′ (t) x′′′ (t)
y′′ (t) y′′′ (t)

∣∣∣∣ 
= 0.

E6 :
{

x = 3t2 + 2t3

y = t2

4ème cas ) le point M est stationnaire, (−→v 0 =
−→
0 ),

(−→a 0,
−→
b 0

)
est lié et (−→a 0,−→c 0) est libre.

Le point M est un point de rebroussement de deuxième espèce.
−−−→
M0M(t) =

(
u2 + λ

u3

3

) −→a0
2
+ u4

−→c0
24
+−→o

(
u4
)
.

F4

REM : pour obtenir ces points, on résout x′ (t) = y′ (t) =

∣∣∣∣
x′′ (t) x′′′ (t)
y′′ (t) y′′′ (t)

∣∣∣∣ = 0 et on regarde si
∣∣∣∣
x′′ (t) x(4) (t)
y′′ (t) y(4) (t)

∣∣∣∣ 
= 0.

E7 :
{

x = 5t2 + 2t5

y = 2t2 + t4
.

Exemples prototypes :

point ordinaire{
x = t
y = t2

point d’inflexion{
x = t
y = t3

point de rebroussement
de première espèce{

x = t2

y = t3

point de rebroussement
de deuxième espèce{

x = t2 + t3

y = t4

.

.

.

.

.

.

.

.

.

.

.

.

DISCUSSION GÉNÉRALE

−−−→
M0M(t) = up

(
1 + λ1u+ ...+ λq−pu

q−1−p
) −→f (p)(t0)

p!
+ uq

−→
f (q)(t0)

q!
+−→o (uq) .

p est le plus petit entier tel que
−→
f (p)(t0) 
=

−→
0 et q est le plus petit entier � p tel que

(−→
f (p)(t0),

−→
f (q)(t0)

)
soit libre.

DEF : p et q sont les entiers fondamentaux du point M(t0).

p pair p impair

q pair

rebroussement de 2ème espèce

cas habituel : p = 2, q = 4

point ordinaire

cas habituel : p = 1, q = 2

q impair

rebroussement de 1ère espèce

cas habituel : p = 2, q = 3

inflexion

cas habituel : p = 1, q = 3

4
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4) Étude des branches infinies.

DEF : t �→M(t) possède une branche infinie quand t→ t0 si OM(t) →
t→t0

+∞, autrement dit, si x2(t) + y2(t) →
t→t0

+∞.

1er cas : x(t) →
t→t0

±∞, y(t) →
t→t0

l ∈ R
Asymptote horizontale y = l.

2ème cas : x(t) →
t→t0

l ∈ R, y(t) →
t→t0

±∞
Asymptote verticale x = l.

3ème cas x(t) →
t→t0

±∞, y(t) →
t→t0

±∞.

DEF : la branche infinie possède une direction asymptotique ssi la droite (OM(t)) possède une position limite quand

t→ t0, autrement dit si sa pente
y(t)

x(t)
dit possède une limite a quand t→ t0 ; le nombre a est appelé la pente de la direction

asymptotique.

Remarque : cette définition ne dépend pas du point O.

D3
DEF : si le nombre a est fini et si de plus y(t) − ax(t) →

t→t0
b ∈ R, la droite d’équation y = ax + b est asymptote à la

courbe.

Exemples: E8:






x =
t3

1− t2

y =
t

1− t2

et






x =
t3

1− t2

y =
1

1− t2

(hyperbole cubique x2y = (y − 1)3).

Cas habituel (où t0 est fini):




x(t0 + u) =
a

u
+ b+ cu+ o(u)

y(t0 + u) =
a′

u
+ b′ + c′u+ o(u)

alors ay(t0 + u)− a′x(t0 + u) = ab′ − a′b+ (ac′ − a′c)u+ o(u)

L’asymptote est ay − a′x = ab′ − a′b, et le signe de ac′ − a′c donne la position.

REM : il existe d’autre cas que les 3 cas ci-dessus, car on peut très bien avoir x2(t) + y2(t) →
t→t0

+∞ sans que ni x (t) ni

y (t) ne tendent vers l’infini ; exemple : {
x = t cos t
y = t sin t

5) Points doubles.

DEF M0

∣∣∣∣
x0
y0

est un point double de t �→M(t) ssi

⇔ ∃t1 
= t2 M(t1) =M(t2) =M0

⇔ ∃t1 
= t2

{
x(t1) = x(t2) = x0
y(t1) = y(t2) = y0

Pour déterminer les points doubles, on résout donc le système
{

x(t2)− x(t1) = 0
y(t2)− y(t1) = 0

en cherchant à simplifier par t2− t1.

5
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E9 :






x =
t2 − 1

t

y =
t2

t− 1
(xy (y − x− 1) = 1 + 2y) et

{
x = sin 2t
y = sin 3t

(courbe de Lissajous).

IV) COURBES EN COORDONNÉES POLAIRES
1) Coordonnées polaires.

P plan euclidien orienté rapporté à un repère orthonormé direct
(
O,
−→
i ,
−→
j
)
, ρ, θ ∈ R, M ∈ P

DEF : (ρ, θ) est un couple de coordonnées polaires de M si

−−→
OM = ρ

(
cos θ

−→
i + sin θ

−→
j
)
= ρ−→u ρ

autrement dit, si M est d’affixe ρeiθ.

Attention : contrairement aux coordonnées cartésiennes, le couple des coordonnées polaires n’est pas unique :

PROP : (ρ, θ) et
(
ρ′, θ′

)
sont des couples de coordonnées polaires du même point M ssi

ρ = ρ′ = 0
ou ρ′ = ρ et θ′ ≡ θ [2π]
ou ρ′ = −ρ et θ′ ≡ θ + π [2π]

2) Équation polaire.

DEF : si f est une fonction de R2 dans R, ”f(ρ, θ) = 0” est une équation polaire d’une courbe (C) du plan si (C) est
l’ensemble des points du plan dont l’un des couples de coordonnées polaire (ρ, θ) vérifie f(ρ, θ) = 0.

si f et g sont deux fonctions de R dans R,
{

ρ = f(t)
θ = g(t)

est une représentation paramétrique polaire de (C) est l’ensemble

des points du plan dont l’un des couples de coordonnées polaire (ρ, θ) vérifie ∃t ∈ Df∩Dg /

{
ρ = f(t)
θ = g(t)

.

Voici en résumé les six types d’équations :
équation équation résolue représentation paramétrique

cartésienne

f(x, y) = 0
maple :
implicitplot(f(x,y), x=a..b, y=c..d)

ex : (x− 1)2 + y2 − 1 = 0

y = f(x)
maple :
plot(f(x), x=a..b)
ex : y = ±

√
2x− x2

{
x = f(t)
y = g(t)

maple :
plot([f(t),g(t), t=a..b])

ex :
{

x = 1 + cos t
y = sin t

polaire

f(ρ, θ) = 0
maple :
implicitplot(f(ρ,θ),ρ=a..b,θ=c..d,coords=polar)
ex : ρ− 2 cos θ = 0

ρ = f(θ)
maple :
polarplot(f(t), t=a..b)
ex : ρ = 2cos θ

{
ρ = f(t)
θ = g(t)

maple :
polarplot([f(t),g(t), t=a..b])

ex :
{

ρ = 2cos t
θ = t

REMARQUE : les équations cartésiennes d’une même courbe sont toutes équivalentes, mais ce n’est pas le cas des équations
polaires : par exemple, ρ = R ou ρ = −R représentent toutes les deux le même cercle.

Passage d’une équation à une autre:

équation cartésienne vers équation polaire : remplacer x par ρ cos θ et y par ρ sin θ

passage inverse : rien d’automatique ! remplacer cos θ par
x

ρ
, sin θ par

y

ρ
puis ρ2 par x2 + y2.

6
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L’équation polaire ρ = f (θ) donne directement comme représentation cartésienne paramétrique :
{

x = f(t) cos t
y = f(t) sin t

Inversement : une représentation cartésienne paramétrique pouvant se mettre sous la forme
{

x = f(u(t)) cosu(t)
y = f(u(t)) sinu(t)

donne pour équation polaire ρ = f (θ) (si u(t) décrit un intervalle d’amplitude 2π).

Exemple E9 (cochléoïde) :






x =
sin t

t

y =
1− cos t

t
D4

Équations polaires à savoir reconnaître :
ρ = a cos θ + b sin θ est l’équation d’un cercle passant par O de diamètre

√
a2 + b2

ρ =
a

α cos θ + β sin θ
est l’équation d’une droite distante de O de

|a|
√

α2 + β2
.

D5

V) ÉTUDE D’UNE COURBE ρ = f (θ)

1) Réduction de l’intervalle d’étude.
ρ→ ρ ρ→−ρ

θ→ θ + θ0
étude θ ∈ [a, a+ θ0]
puis rot0,θ0 itérée

étude θ ∈ [a, a+ θ0]
puis rot0,θ0+π itérée

cas θ0 = 2π
étude θ ∈ [a, a+ 2π]
on obtient toute la courbe

étude θ ∈ [a, a+ 2π]
puis sym0

cas θ0 = π
étude θ ∈ [a, a+ π]
puis sym0

étude θ ∈ [a, a+ π]
on obtient toute la courbe

θ→ θ1 − θ
étude θ ∈ [θ1

2
,+∞[

puis sym
θ=

θ1
2

étude θ ∈ [θ1
2
,+∞[

puis sym
θ=

θ1
2
+π

2

cas θ1 = 0
étude θ ∈ [0,+∞[
puis symOx

étude θ ∈ [0,+∞[
puis symOy

Bien commencer par le θ0 > 0, puis le θ1 � 0, et les choisir tout de suite les plus petits possibles.
EXEMPLE E10 : ρ = cos 2θ (quadrifolium).

2) Étude des tangentes.

On pose






−→uρ = cos θ
−→
i + sin θ

−→
j

−→uθ = rπ/2 (
−→uρ) =

d−→uρ
dθ

= − sin θ−→i + cos θ−→j
(M(θ),−→uρ,−→uθ) est le repère tournant.

On a alors






−−→
OM = ρ−→uρ
d
−→
M

dθ
=

dρ

dθ
−→uρ + ρ−→uθ

La tangente en M(θ) à la courbe ρ = f (θ) est donc dirigée par le vecteur de coordonnées

{
dρ

dθ
= ρ′ = f ′ (θ)

ρ = f(θ)
DANS

LA BASE TOURNANTE.

7
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L’angle ψ entre (OM) et la tangente est donc donné par

tanψ =
ρ

ρ′
=

f(θ)

f ′ (θ)

REMARQUE IMPORTANTE :

Si la courbe passe par O pour θ = θ0, et ρ′(θ0) 
= 0,
d
−→
M

dθ
(θ0) est colinéaire à −→uρ (θ0) : la tangente à la courbe en O est

donc toujours la droite θ = θ0 (et on démontre que ce résultat subsiste même si ρ′(θ0) = 0)
D5

Alexandrin à retenir : quand la courbe est en O, la tangente est −→uρ.
3) Tableau de variations.

E11

ρ = aθ (tracé avec a =
1

2π
; spirale d’Archimède) ; ρ = eaθ (tracé avec a =

ln 2

2π
; spirale logarithmique) ; ρ = 1 + cos θ

(cardioïde).

4) Branches infinies.

PROP : la courbe ρ = f (θ) possède une branche infinie quand θ → θ0 ∈ R si lim
θ→θ0

|f (θ)|) = +∞.

1er cas lim
θ→±∞

f (θ)) = ±∞

La courbe présente une branche en spirale (cf. les deux premiers exemples E10)

2ème cas lim
θ→θ0

f (θ)) = ±∞ avec θ0 ∈ R

PROP1 : la branche infinie possède alors toujours une direction asymptotique, de pente tan θ0.

D6

PROP2 : la courbe possède alors une asymptote ssi le nombre d = ρ sin (θ − θ0) possède une limite finie d0 quand θ→ θ0.
L’asymptote a pour équation Y = d0 dans le repère (0,−→uρ (θ0) ,−→uθ (θ0)), ce qui donne pour équation cartésienne dans(

O,
−→
i ,
−→
j
)
:

− sin θ0x+ cos θ0y = d0 ou encore y = tan θ0x+
d0
cos θ0

si θ0 
=
π

2
+ kπ)

D7
E12 : ρ =

1

cos 2θ
(cruciforme).

REM : si θ0 = kπ, chercher simplement la limite de y = ρ sin θ, et si θ0 =
π

2
+ kπ, chercher la limite de x = ρ cos θ.

E13 : ρ = tan θ (kappa), ρ = cot 2θ (moulin à vent).
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