COURS MPSI 11. COURBES PLANES R. FERREOL 09/10

I) FONCTIONS VECTORIELLES.
P plan euclidien orienté rapporté a un repére orthonormé direct (O, 7, ?) , P ensemble des vecteurs de P , 7) fonction

de R vers 1_3 d’ensemble de définition D.

?(t) xgg _ _» to point adhérent & D, T Z __. € P.
A (z ¥ / (i »J)
lim f(t)= 1 < lim | Ft) -1 H =0
t—to t—to
DEF : ¢ 77 est continue en ty € D Jim 7(t) = ?(to)

— o
f est dérivable en ty) € D < lim

t—tot — g (7@ - ?(to)) existe ( def 7)'(750))
Notation : 7(t) = % (F(1)).

T dt
PROP :
— —
lim f(t) =1 & limz(t) =aet limy(t) =b
t—to t—to t—to

N
f est continue en tg € D < x et y sont continues en

e : ° : - — —
f est dérivable en ¢y € D < x et y sont dérivables en tg et f'(to) = 2'(t0) ¢ + ' (¢o) j

D1

PROPRIETES : (det- <7 7

D2

1) COURBES PARAMETREES.

R—P
t— M(t) ‘ ;Eg d’ensemble de définition D = D, N D,,.

(C) = {M(t) /€ D}
7 (t) = OM()

M .

DEF : (C) est la courbe associée a t — M (t),et t — M (t) est une paramétrisation de ’ensemble (C').

PROP : en faisant une confusion entre M, x,y variables et M, x,y fonctions :

M y € (C)&e3teD M=DM(@)

x = x(t)
& dteD Y= y(t)

DEF : ;i ;Eg est une représentation paramétrique de (C).
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REMARQUE : une courbe de fonction, d’équation y = f(x) peut étre paramétrée par M (t) tf( ) et a donc pour
représentation paramétrique : ‘ v=t
Jy=f@)
AUTRES EXEMPLES : E1
dOM\  dO'M dM
-
PROP: f'(¥) [ = = pour tout point O’ ; il est donc noté ——.
dt dt dt
D3
dM
-
DEF: f'(t) = e x'(t)? —|—y’(t)7 est le vecteur vitesse a I'instant ¢, noté v’ (t) ou v (M) (pratique mais dangereux).
DEF:J W point M est réqulier < v (M) # 0
. —
M est singulier (ou stationnaire) < v (M) = 0
— (M)
Si M est régulier, le vecteur tangent en M est T = im (en choisissant 4+ ou - de sorte a éviter des valeurs

absolues) ; la droite passant par M et dirigée par T est la tangente a (C) en M ; et Pon définit la vitesse algébrique v(t)
—
par v (t) =v(t)T.
M

DEF : 7"(75) =g = x”(t)7 + y”(t)? est le vecteur accélération & I'instant ¢, noté @ (t) ou @ (M).

DEF : un point M est biréqulier < (v (M), d (M)) est libre.
— — — —
DEF : le vecteur normal N en M régulier est 'image de T' dans la rotation d’angle /2 ; le repére (M , T, N > est appelé
le repére de Frénet en M.

, s R , = ~ — =1 ~ , .
On décompose alors ’accélération dans la base de Frénet <T , N > @ =arT +anN ;ap et ay sont appelés accélérations

tangentielle et normale.

EXEMPLE : E2

| 7| = cte < v.ar = 0 (mouvement uniforme)
Exercice : montrer que { || 7| / < v.ar > 0 (mouvement accéléré)
7] \\ © v.ar < 0 (mouvement retardé)

III ETUDE D’UNE COURBE PARAMETREE.
1) Réduction de I’ensemble d’étude.

a) Changer t en t +T.
Si M(t+T)=F(M(t)) ou F est une isométrie du plan, on n’étudiera la paramétrisation que sur [a, a+ T} ; pour obtenir
la courbe entiére, on effectuera les transformations F'*, k € Z sur la portion de courbe obtenue.

(soit z(t+T) = y(t) et y(t +T) = z(¢)), on étudie sur [a,a + T] ; on

Par exemple, si lorsque t — ¢t 4+ T, r=y
—

effectuera une symétrie par rapport & la premiére bissectrice pour obtenir la courbe entiére.

b) Changer ¢t en —t.

Si M(—t) = F (M (t)) ou F est une isométrie du plan, on n’étudiera la paramétrisation que sur I’ensemble d’étude
précédent N Ry (ou N R_) ; pour obtenir la courbe entiére, on effectuera la transformation F sur la portion de courbe
correspondant a cet ensemble d’étude.

T = cos 2t

Exemple : E3 { y = sin 3¢
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¢) Changer ¢t en T — ¢t (le cas précédent étant en fait un cas particulier).
Si M(T —t) = F(M(t)) ou F est une isométrie du plan, on n’étudiera la paramétrisation que sur I’ensemble d’étude

précédent N [5, +oo[ (ou N ]—o0, =]) ; pour obtenir la courbe entiére, on effectuera la transformation F' sur la portion de
courbe correspondant & cet ensemble d’étude.

) x = cost +sin’t
Exemple : E4 { y = sint + cos? t
1
d) Changer ¢ en 7
Si M(1/t) = F(M (t)) on F est une isométrie du plan, on n’étudiera la paramétrisation que sur l’ensemble d’étude
précédent N [ —1,1] (ou N |—o0, —1] U [1,+00[) ; pour obtenir la courbe entiere, on effectuera la transformation F sur la
portion de courbe correspondant a cet ensemble d’étude.

2t
x =
Exemple : E5 (puntiforme) : 1 QLttQ
(A

L’ensemble d’étude final est celui obtenu en d) intersecté avec ’ensemble de définition.
2) Etude des deux fonctions t +— x(t) et t — y(t) sur ’ensemble d’étude.

Présentation du tableau de variations :

Exemples : E3, E4, E5

3) Etude locale.

En M, zo = (to) , si t =tg + u, Taylor-Young donne :
Yo = y(to)

ae "¢ ) (¢
x(t) = xo + ' (to)u + L éo)uz + I é O)u?’ + 2 %( 0)u4 + o(u?)
(¢ e (4) (¢
y(t) = o + ¢/ (toyu+ L0024 LU0 s 52 U0) o)
2 6 24
o @ b @
soit, vectoriellement : MoM (t) = u vy + uZ?O + u3€0 + u42—z + 70 (u)

ler cas) le point My est birégulier (79, @) est libre).
Le point My est un point ordinaire de la courbe.

_
MoM(@t) = u g +u2% +7 (u?)

F1

2¢me cas ) le point My est régulier (Vg # W), mais non birégulier ((7°g, @) est lié), et <ﬁ, b_0>> est libre.
Le point My est un point d’inflexion.

9 —
MoM (t) = <u+)\%> v_o’+u3%0 + 70 (u?).

F2

/ 1
REM 1 : pour obtenir ces points, on résout @ (t) 2" (t)

y' () y" (@)
REM 2 : Dans le cas d’une courbe y = f (x), cela donne les conditions :

f' (@) =0, f" (x) #0

‘ = 0 et on regarde si

REM 3 : comme i /* on peut remplacer la résolution de o' (t) @
' o) T o P P y () v ()

souvent plus simple.
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— —
3éme cas ) le point My est stationnaire (g = 0'), mais (70, b 0) est libre.

Le point My est un point de rebroussement de premiére espéce.
—

>
— b
MM (t) = uZ% Ut T ().

F3
REM : pour obtenir ces points, on résout a’ (t) =y’ (t) = 0 et on regarde si

[ x=3t2 4263

N
4éme cas ) le point M est stationnaire, (7 = 6}), (70, b 0) est lié et (@, o) est libre.

Le point M est un point de rebroussement de deuxiéme espéce.

= 7 u? % C_O) —
MoM (t) = <u2 +>\§) 5 +u4ﬁ + 70 (u?).

F4

REM : pour obtenir ces points, on résout z’ (t) =y’ (t) = ‘ = 0 et on regarde si 2" (1) = (1) #0
' ’ y' )y () y' )y (1) '
[ x=5t2 4265
ET: y=2t2 +t*
Exemples prototypes :
- — - = - point de rebroussement point de rebroussement
point ordinaire point d’inflexion = - — -
de premiére espéce de deuxiéme espéce
T=t r=t V) 2 13
Y Y= t3 y = t4

DISCUSSION GENERALE

! (p)'(to) + ud 7’(‘1)'@0) +70 (u9).
2 q:

— — — —
p est le plus petit entier tel que f ) (o) # 0 et g est le plus petit entier > p tel que ( f®(ty), f@ (t0)> soit libre.
DEF : p et ¢ sont les entiers fondamentauz du point M (t).

-
MoM(t) = u? (14 Ay + ... + Ag_pud='7P)

p pair p impair
rebroussement de 2éme espéce point ordinaire
q pair
cas habituel : p=2,q=14 cas habituel : p=1,qg =2
rebroussement de 1ére espéce inflexion
q impair
cas habituel : p=2,¢=3 cas habituel : p=1,¢=3
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4) Etude des branches infinies.

DEF : ¢t — M(t) possede une branche infinie quand t — to si OM (t) .=, oo, autrement dit, si 22(t) + y>(t) o oo
—to —to
ler cas : x(t) — Zoo, y(t) — [€R
t—>t0 t—)t[)
Asymptote horizontale y = I.

2¢me cas : z(t) T leR, y(t) P +oo
—to

—to

Asymptote verticale x = I.

3éme cas x(t) B +o0, y(?) B +00.
—to —to

DEF : la branche infinie posséde une direction asymptotique ssi la droite (OM(t)) posséde une position limite quand

t
t — to, autrement dit si sa pente M dit posséde une limite a quand ¢ — tg ; le nombre a est appelé la pente de la direction

x(t)

asymptotique.

Remarque : cette définition ne dépend pas du point O.

D3
DEF : si le nombre a est fini et si de plus y(t) — ax(?) 7 b € R, la droite d’équation y = ax + b est asymptote a la
—10
courbe.
t3 t3
x = 5 T =105 ) ) 5
Exemples: ES: 1 7 = et 1 t* (hyperbole cubique z%y = (y — 1)°).
YTioe VT1oe

Cas habituel (ou g est fini):
a
z(to+u) = ; +b+cu+ o(u)

y(to+u) = % + b + u+o(u)
alors ay(to +u) — a’'z(to +u) = ab — a’b+ (ac’ — a’c)u + o(u)
L’asymptote est ay — a’x = ab’ — a’b, et le signe de ac’ — a’c donne la position.
REM : il existe d’autre cas que les 3 cas ci-dessus, car on peut trés bien avoir z2(t) + y2(t) T +oo sans que ni z (t) ni

y (t) ne tendent vers l'infini ; exemple :
T =tcost
y =tsint

5) Points doubles.

DEF M, ;0 est un point double de t — M(t) ssi
0

& dty %tz M(tl) = M(tz) = My

z(t1) =x(t2) =
& dty # e { y(ti) = y(tz) = y(())

Pour déterminer les points doubles, on résout donc le systéme { en cherchant & simplifier par to — ¢;.
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t2—1
€Tr =

E9: ttZ (xy(yx1)1+2y)et{
t—1

xr = sin 2t

J = sin 3t (courbe de Lissajous).

y:

IV) COURBES EN COORDONNEES POLAIRES
1) Coordonnées polaires.

P plan euclidien orienté rapporté a un repére orthonormé direct <O, ?, 7) , 0,0 R M e P
DEF : (p,0) est un couple de coordonnées polaires de M si

OM:p(COSQZ +sm93> =pU,
autrement dit, si M est d’affixe pe’.

Attention : contrairement aux coordonnées cartésiennes, le couple des coordonnées polaires n’est pas unique :

PROP : (p,6) et (p’ , 9') sont des couples de coordonnées polaires du méme point M ssi

oup =petd =0 [27]
oup =—petd =0+7 [27]

hs

2) Equation polaire.

DEF : si f est une fonction de R? dans R, ” f(p,0) = 07 est une équation polaire d’une courbe (C) du plan si (C) est
Pensemble des points du plan dont 'un des couples de coordonnées polaire (p, 8) vérifie f(p,0) = 0.

si f et g sont deux fonctions de R dans R, { g z g((g est une représentation paramétrique polaire de (C') est 'ensemble
des points du plan dont I'un des couples de coordonnées polaire (p, #) vérifie 3t € DfND, / { g i gg))

Voici en résumé les six types d’équations :

équation équation résolue représentation paramétrique
z = f(t)
flz,y) =0 y=f(z) {y=g@
L. maple : maple : maple :
cartésienne implicitplot(f(x,y), x=a..b, y=c..d) plot(f(x), x=a..b) plot([f(t),g(t), t=a..b])
ex: (z—1)>2412-1=0 ex: y=+v2x — 22 o | T=1+cost
" | y=sint
{p=f@
f(p,0) =0 p=f(0) 0=g(t)
lai maple : maple : maple :
polatre implicitplot(f(p,0),p=a..b,0=c..d,coords=polar) polarplot(f(t), t=a..b) polarplot([f(t),g(t), t=a..b])
ex: p—2cosf =0 ex: p=2cosf p=2cost
ex : 9 —¢
REMARQUE : les équations cartésiennes d’une méme courbe sont toutes équivalentes, mais ce n’est pas le cas des équations
polaires : par exemple, p = R ou p = —R représentent toutes les deux le méme cercle.

Passage d’une équation & une autre:

équation cartésienne vers équation polaire : remplacer x par pcosf et y par psinf

passage inverse : rien d’automatique ! remplacer cos par —, sin par L puis p? par z? + 3.
P P
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L’équation polaire p = f (f) donne directement comme représentation cartésienne paramétrique :

{ x = f(t)cost
y = f(t)sint

Inversement : une représentation cartésienne paramétrique pouvant se mettre sous la forme

{ x = f(u(t)) cosu(t)
y = f(u(?))sinu(t)

donne pour équation polaire p = f (6) (si u(t) décrit un intervalle d’amplitude 27).

sint

Exemple E9 (cochléoide) : 1 t cost
y=—"—"

t
D4

Equations polaires & savoir reconnaitre :
p = acosf + bsin est 'équation d’un cercle passant par O de diameétre va? + b2

p= m est ’équation d’une droite distante de O de \/%62-
D5

V) ETUDE D’UNE COURBE p = £ ()

1) Réduction de l'intervalle d’étude.
pP—p pP— =P

0 — 6+ 6q

étude 0 € [a,a + 0o
puis T0tg g, itérée

étude 0 € [a,a + 0o
puis rotg g, 4+ itérée

cas 0y = 27

étude 6 € [a,a + 27]
on obtient toute la courbe

étude 6 € [a,a + 27]
puis symy

étude 6 € [a,a + 7]

étude 6 € [a,a + 7]

cas fo = m puis symy on obtient toute la courbe
91 91
étude 0 € [—, +0 étude 0 € [—, +0
00— 0, -0 ) [ 2 [ ] [ 2 [
puis symez%]_ puis symez%]_+%
étude 6 € [0, +00] étude 6 € [0, +00]
cas 01 =0 . .
puis SYMoy puis symoy

Bien commencer par le 8y > 0, puis le 87 > 0, et les choisir tout de suite les plus petits possibles.

EXEMPLE EI10 : p = cos 20 (quadrifolium).

2) Etude des t

angentes.

u, =cosf i +sinfd j N
On pose ¢ _, . du, N — (M(0),u,,ug) est le repére tournant.
Ug =172 (Uy) = d_ep = —sinf i +cosf j
OM = pu,
On a alors ¢ 41/ dp_,
9o " agte T

do _

/!
La tangente en M(0) a la courbe p = f () est donc dirigée par le vecteur de coordonnées { a0 P~ a0

LA BASE TOURNANTE.

p=f(0)

DANS
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L’angle ¢ entre (OM) et la tangente est donc donné par

p _ [0
tany = — =
p 1)
REMARQUE IMPORTANTE : .
Si la courbe passe par O pour 8 = 6y, et p'(6y) # 0, dd—]\: (o) est colinéaire & u, (fp) : la tangente a la courbe en O est
donc toujours la droite § = 6y (et on démontre que ce résultat subsiste méme si p’(0y) = 0)

D5

Alexandrin a retenir : quand la courbe est en O, la tangente est w,.
3) Tableau de variations.

Ell
1 In2

p = al (tracé avec a = o spirale d’Archiméde) ; p = e®? (tracé avec a = ;— ; spirale logarithmique) ; p = 1 + cos 6
™ T

(cardioide).
4) Branches infinies.

PROP : la courbe p = f () posséde une branche infinie quand § — 6y € R si 6liIr01 |f(8)]) = +o0.
ler cas Hggloof (0)) = £oo

La courbe présente une branche en spirale (cf. les deux premiers exemples E10)

2éme cas 01112 f(0)) = oo avec 0 € R
—Vo

PROPI1 : la branche infinie posséde alors toujours une direction asymptotique, de pente tan 6.

D6

PROP2 : la courbe posséde alors une asymptote ssi le nombre d = psin (8 — ) posséde une limite finie dy quand § — 6.
L’asymptote a pour équation Y = dy dans le repére (0,u, (6y),ug (6p)), ce qui donne pour équation cartésienne dans

(O,?,?) :

d
—sinfpx + cos Opy = dy ou encore y = tan fpx + 9 s 0o # T + k)
cos By 2

D7

1
El12: p=——
P s 20 (

cruciforme).

REM : si 0y = km, chercher simplement la limite de y = psin@, et si 0y = g + km, chercher la limite de x = pcos 6.

E13: p =tanf (kappa), p = cot 260 (moulin & vent).



