
DÉMONSTRATIONS D’ARITHMÉTIQUE

D1 (Théorème de la division euclidienne)
Données a,b entiers, b � 0 (donc b � 1�.

1) ANALYSE
Si le couple �q, r� existe, 0 � r � a � bq � b, donc bq � a � b�q � 1��, d’où

q � a
b

� q � 1 et q est la partie entière de a/b et r � a � bq : fin de l’analyse.

2) SYNTHESE

Soit q � E a
b

et r � a � bq ; alors a � bq� r et q � a
b

� q � 1 d’où

0 � r � a � bq � b ; fin de la synthèse.

D2 (Théorème des sous-groupes de Z)
Soit G un sous-groupe additif de Z ; on vérifie déjà que si a appartient à G, alors

aZ � G ; en effet, par récurrence sur n on montre que na appartient à G pour tout naturel
n (stabilité pour �), puis comme �a appartient à G, que na appartient à G pour tout n
entier négatif.

Si G � �0�, G � 0Z ; supposons donc G � �0�.
Comme x � G � �x � G, G � N� est non vide et possède un plus petit élément a ;

d’après ce que nous venons de voir aZ � G , et montrons l’inclusion réciproque.
Soit x un élément de G ; effectuons la division euclidienne de x par a ; x � aq� r ;

comme x et a appartiennent à G, r � x � aq appartient à G et vérifie 0 � r � a ; a étant le
minimum de G � N�, la seule possibilité est r � 0 ; donc x � aq et x � aZ.

Conclusion : G � aZ.

D3 (Théorème de la décomposition d’un entier dans une base)
Soit b entier � 2;

On va montrer par récurrence sur n que si
bn � a � bn�1 alors �!�r 0, r 1, . . . , rn� � �|0,b � 1|�n�1/

a � r 0 � r 1b � r 2b2 �. . .�rnbn avec rn � 0

Cas n � 0 ; alors si 1 � a � b, a � r 0, avec r 0 � 0.

HR : si bn � a � bn�1 alors �!�r 0, r 1, . . . , rn� � �|0,b � 1|�n�1/

a � r 0 � r 1b � r 2b2 �. . .�rnbn avec rn � 0

Soit maintenant a tel que bn�1 � a � bn�2



S’il existe �r 0, r 1, . . . , rn� � �|0,b � 1|�n�1 tel que
a � r 0 � r 1b � r 2b2 �. . .�rnbn � rn�1bn�1 � r 0 � b�r 1 � r 2b �. . .�rn�1bn�, r 0 est forcément le
reste de la division euclidienne de a par b, d’où son unicité;

Effectuons donc la division euclidienne de a par b : a � bq� r 0.
Comme 0 � a � bq � b � 1, on a : a � b � 1 � bq � a, donc bn�1 � b � 1 � bq � bn�2,

donc bn � 1 � 1/b � q � bn�1, d’où bn � 1 � q � bn�1 ; on peut donc appliquer l’H.R. à q :
�!�r 1, r 2, . . . , rn�1� � �|0,b � 1|�n�1/

q � r 1 � r 2b �. . .�rn�1bn avec rn�1 � 0

alors a � bq� r 0 � r 0 � r 1b � r 2b2 �. . .�rn�bn�1avec rn�1 � 0 et �r 0, r 1, . . . , rn�1� unique :
CQAR.

D5

Soit a,b entiers ; les divisions euclidiennes de a et b par n s’écrivent a � qn� r et
b � q�n � r �.

alors, comme a � b � n�q� � q� � r � r �, on a a � b �n� ssi n divise r � r � , ssi r � r � (car
r et r � sont entre 0 et n � 1�.

D6,7 : tableau

D8 (Théorème de Bézout)

LEMME : si G1 et G2 sont deux sous-groupes de Z, G1 � G2 aussi.
Voir tableau pour la démo.

Sens "trivial" du théorème.
Si au� bv � 1
Soit d un diviseur commun � 0 à a et b ; alors d divise au� bv, donc 1, donc d � 1 et

a et b sont premiers entre eux.
Sens non trivial.

Si a et b sont premiers entre eux ; aZ et bZ étant des sous-groupes de Z, aZ � bZ
aussi d’après le lemme ; d’après le théorème des sous-groupes, il existe un naturel c tel
que aZ � bZ �cZ.

Comme a � a. 1 � b. 0 appartient à aZ � bZ, a � cZ , donc c divise a ; de même, il
divise b, donc, comme a et b sont premiers entre eux, c � 1 ; mais alors 1 appartient à
aZ � bZ, donc il existe u et v tels que au� bv � 1.

D9 (Théorème de Gauss)



Si a divise bc (bc � ka) et a est premier avec b ; d’après Bézout il existe u et v tels
que au� bv � 1;

on écrit alors c � acu� bcv � acu� kav � a�cu� kv� donc a divise c.

D10 :
En effet, c � ka, et b divise ka avec b premier avec a ; donc (Gauss) b divise k , d’où

ab divise c.

D11 :tableau

D12 (Caractérisations du pgcd).

1� 2
d est le pgcd de a et b, donc d divise a et b,a/d � q,b/d � q�.
soit � un diviseur de q et q� ; alors �d est un diviseur de a � qd et b � q�d, donc

�d � d d’où � � 1; comme � � 0, � � 1, donc q et q� sont bien premiers entre eux.

2� 3
on sait que q et q� sont premiers entre eux, donc d’après Bézout, il existe u et v tels

que qu� q�v � 1 ; en multipliant par d, on obtient d � au� bv ; donc d � aZ � bZ , d’où

dZ � aZ � bZ (car aZ � bZ est un sous-groupe de Z ).

Maintenant, si x appartient à aZ � bZ , c’est un multiple de d puisque a et b sont des

multiples de d. Donc x appartient à dZ et aZ � bZ � dZ .

3� 4
On sait que aZ � bZ � dZ et supposons que d� divise a et b. Comme d appartient à

dZ , donc à aZ � bZ , d est un multilpe de d�, donc d� divise d.
Supposons que d� divise d, l’hypothèse aZ � bZ � dZ montre que a et b

appartiennent à dZ donc que d divise a et b. par transitivité, d� divise donc a et b.

4� 1
H : pour tout d� � 0, d�divise a et b ssi d�divise d

En prenant d� � d, on obtient que d divise a et b. Si maintenant d� divise a et b, il
divise d donc il est � d (ici, tout est �1) , d’où 1.

D13 (Algorithme d’Euclide basique)



PGCD�a,b� �PGCD�min�a,b�, |a � b|� ??
Si a � b cela s’écrit PGCD�a,b� �PGCD�a,b � a� et cela provient de ce que les

diviseurs communs à a et b sont les mêmes que les diviseurs communs à a et à b � a ;
l’autre cas s’obtient en échangeant a et b.

Posons maintenant
a0 � a

b0 � b
et

an�1 � min�an,bn�

bn�1 � |an � bn |
; d’après ce qui précède, on

a PGCD�an,bn� �PGCD�a,b� pour tout n.
Supposons que an � bn , et non nuls, par exemple 0 � an � bn ; alors max�an�1

bn�1� � max�an,bn � an� � bn � max�an,bn� (idem pour l’autre cas).
Si on avait constamment an � bn , et non nuls, alors �max�an,bn�� serait une suite

strictement décroissante d’entiers �0 : c’est absurde ; il existe donc un n pour lequel
an � bn et alors PGCD�a,b� � an.

D14 (Algorithme d’Euclide par division euclidienne)

PGCD�a,b� �PGCD b, reste�a,b� ??

Cela vient de ce que reste�a,b� � a � bq et que les diviseurs communs à a et b sont
les mêmes que ceux communs à a et a � bq.

Si on pose
a0 � a

b0 � b
et

an�1 � bn

bn�1 � reste�an,bn�
, d’après ce qui précède, on a

PGCD�an,bn� �PGCD�a,b� pour tout n.

Si bn est non nul (donc �0) alors par définition du reste de la division euclidienne,
bn�1 � bn ; si bn était constament non nul, la suite �bn� serait une suite strictement
décroissante d’entiers �0 : absurde : il existe donc un n pour lequel bn � 0 et alors
PGCD�a,b� � an.

D15:

D16 (Caractérisations du PPCM)

1� 2
m � PGCD�a,b� ; aZ � bZ est un sous-groupe de Z (intersection de 2 sous-groupes)



et m est son plus petit élément strictement �0 ; on a vu dans D2 qu’alors aZ � bZ �nZ.

2	 3 est évident, c’est une simple traduction (car m� est mutiple de a et b ssi m�

appartient à aZ � bZ )

3� 1 vient de ce qu’un multilple positif d’un nombre positif est plus grand que
celui-ci.

D17 (Relation entre le PGCD et le PPCM)

Soient maintenant a,b � 0 d �PGCD�a,b� et m �PPCM�a,b�
1er cas : d � 1 ; a et b sont premiers entre eux, et a et b divisent m ; donc d’après

D10 ab divise m ; mais comme m divise ab (car il divise tout multiple commun à a et b�
ab � m, CQFD

cas général :

PGCD�a,b� �PPCM�a,b� � d.PGCD� a
d

, b
d
� � d.PPCM� a

d
, b

d
� � d2 a

d
b
d

� ab.

D19 (critère d’Eratosthène)
Lemme :
si n � dd�, alors d � n � n

d�
� n � n

n
� d� � d� � n .

Supposons donc que n � 2 ne possède pas de diviseur premier dans �2, n � ; alors
tout entier � 2 ayant un diviseur premier, il ne possède pas de diviseur tout court dans
�2, n � ; mais d’après le lemme, il n’en possède pas non plus dans � n ,n/2�, donc dans
� n ,n � 1� : il est donc premier.

D20
Montrons par récurrence sur k que la liste Lk est croissante, que les k premiers

termes de la liste Lk sont les k premiers nombres premiers et que les autres termes sont
tous ceux entre 2 et n qui ne sont pas divisibles par les k � 1 premiers nombres
premiers.

C’est bon pour k � 1, et supposons que ce soit bon pour un certain k ; dans Lk�1 on a
ôté tous les multiples du k-ième terme de Lk ; les k premiers termes de Lk�1 sont
toujours premiers et le k � 1 ième l’est également car il n’est mutiple d’aucun des k
premiers nombres premiers, et c’est le plus petit à avoir cette propriété. Les termes
restant sont tous ceux entre 2 et n qui ne sont pas divisibles par les k � 1 premiers
nombres premiers, et non plus par le kièmepuis qu’on a ôté ses multilples , CQAR.

Considérons la dernière liste Lk dont le k � 1 ième terme est � n ; ses k � 1
premiers termes sont les nombres premiers � n , et les autres sont tous ceux entre 2 et



n qui ne sont pas divisibles par ceux-ci. D’après le lemme ci-dessus, ce sont les
nombres premiers entre 1 et n restant.

D21
Preuve du LEMME : soit un nombre premier p divisant un produit de nombres

premiers p1p2. . .pk. S’il n’est pas égal à p1, il est premier avec lui, donc (Gauss) il divise
p2. . .pk ; s’il n’est pas égal à p2, il divise p3. . .pk etc... Enfin, s’il n’est égal ni à p1, ni à
pk�1, alors il divise pk donc il lui est égal CQFD.

Supposons donc qu’un entier se décompose de deux façons en produit de facteurs
premiers ; on est donc en présence de deux listes croissantes de nombre premiers dont
les produits sont égaux ; tout nombre d’une des listes divise le produit des éléments de
l’autre, donc doit se retrouver dans l’autre liste (y compris s’il y a des répétitions) ; les
deux listes sont donc égales.


