COURS MPSI A 7. POLYNOMES R. FERREOL 16/17

Dans tout ce cours, K désigne R ou C.

I) DEFINITIONS
1) Fonctions polynoémes.

DEF : une application f d’une partie I de K dans K est dite polynomiale (ou appelée une fonction polynéme) si

dn € N3(ag,a1,...,a,) € Krtt /Y el f(x)= Zakxk' =ag+a1x+ ... +apx”
k=0

L’ensemble des fonctions polynomiales de I dans K est noté P (I, K).

PROP : P (I, K) est a la fois un sous-espace vectoriel et un sous-anneau de A (I, K) = K (muni de I'addition et de la
multiplication externe dans le premier cas, et muni de ’addition et de la multiplication interne dans le deuxiéme).
D1

2) Polynomes formels.

DEF : un polynome (formel, & une indéterminée) sur le corps K est une suite définie sur N d’éléments de K, nulle & partir
d’un certain rang ; 'ensemble de ces polynomes est noté K[X] :

VkEeN ap e K
K[X]:{(ak')k>o / { 3n€N/@k>nak:0 }

a, est le coefficient d’indice k (ou de rang k) du polynome P = (aj) (mais attention : ay est le k + 1—iéme coefficient).
En particulier, le polynéme nul, noté par abus 0, est (0,0, ....), et I'indéterminée, notée X, est (0,1,0,0,....).

DEF :
- le degré d’un polynome non nul est I'indice maximum d’un coefficient non nul ; par convention, le degré du polynéme
nul est —oo.

pour P = (ag),~,deg P = maxk
z a#0

- la waluation d’un polynéme non nul est 'indice minimum d’un coefficient non nul ; par convention, la valuation du
polyndéme nul est +oc.

pour P = (a);q,val P = ;?Ll;é%k

El

DEF :
- les polynomes de degré 0 et le polynome nul sont dits constants.
- P est appelé un monoéme si deg P = val P (un seul coefficient non nul).
- si n = deg P, le coefficient de rang n est appelé le coefficient dominant ou "de téte" du polynéme.
- un polyndéme dont le coefficient dominant est égal & 1 est dit normalisé, ou unitaire.
Exemple : le monéme unitaire de degré 1 est X = (0,1,0,0...).
IT) ESPACE VECTORIEL ET ANNEAU K[X].
1) Espace vectoriel K[X].

Remarquons que K[X] est un sous-ensemble de K, qui, muni de ’addition et de la multiplication & opérateurs dans K,
est un K-espace vectoriel ; si P = (ax);o et Q@ = (bk)y>(, par définition, P + Q = (ak + bx)j» o €t AP = (Aak)p= -

PROP : K[X] est un sous-espace vectoriel de K.
D2

2) Multiplication des polyndmes ; anneau K|[X].
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DEF :si P = (ag) et @ = (bg), par définition, PQ = (ci) avec

k
Cp = Z aibj = Zaibk_i = apbg + a1bp—1 + ... + a;bi—; + ... + ap—1b1 + arbg
itj=k i=0

REM : pour que ceci définisse bien une loi de composition interne dans K[X], il faut vérifier que la suite (c;) est bien
nulle & partir d’un certain rang ; ceci vient de ce que :

PROP : si (ag) est nulle a partir du rang n + 1 et (bg) est nulle a partir du rang m + 1, (¢) est nulle & partir du rang
n+m+1; de plus ch4m = anbm.-
D3

PROP : (K[X],+, X) est un anneau commutatif intégre.

D4

3) Notation classique Y~ arX* des polynomes.
k>0
a) On remarque que si A € K

()\,0,0) + (ao,al,...)
()\,0,0) X (ao,al,...) =

Il n’y a donc pas de contradiction & confondre le polynome constant (A, 0,0...) avec le scalaire A, ce que I'on fait dorénavant
; le corps K est maintenant confondu avec 'ensemble des polynomes constants (donc K C K[X]).

()\ + ag, a1, )
(Aao, Aaq, ...)

b) On remarque que si k € N, (ag, aq,...) x X = (0, a9, a1, ...) et donc (0,0, ...,0,1,0,0,..) (avec le 1 au rang k)
est égal & X* (par convention, X% = 1).

¢) On en déduit que (ag, ai,...) peut s’écrire sous la forme

(ag,a1,...) = ap+ a1 X + aa X%+ ... = Y ap X*
k=0

(cette derniére somme n’étant qu’en apparence infinie puisque les aj, sont nuls APCR).

D5

| VYkeN aq, e K
, _ k k
donc dorénavant K[X] = {kgoakX /{ TneN/Vk>nag=0 }

REM : la propriété

(Zaka Zkak> =VkeN ap =bg

k>0 k>0

est alors une évidence
(alors que

(VweK Y agxk = Zbkxk> =VkeN ap =0
E>0 £>0

n’en est pas une : voir plus loin).
4) Propriétés du degré et de la valuation vis-a-vis de la somme et du produit.

PROP : si P,Q € K[X]

deg (P + Q) < max (deg P, deg Q)

val (P 4+ @) > min (val P, val Q)

avec égalité assurée si deg P # deg @

avec égalité assurée si val P # val

deg PQ = deg P+ deg Q)

val PQ = val P + val Q)
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D6
5) Espace vectoriel des polynomes de degré inférieur ou égal a n.

PROP : pour tout naturel n, ensemble des polyndmes de degré inférieur ou égal & n, noté K,[X] est un sous-espace
vectoriel de K[X] ; la famille (1, X, X% ...,X ”) en est une base, appelée la base canonique ; la dimension de K,[X] est donc
n+ 1.

D7

ATTENTION 1 : dimK,[X]=n+1 €t NON » !
ATTENTION 2 : K,,[X] n’est pas un sous-anneau de K[X], sauf pour n = 0.
ATTENTION 3 : I’ensemble des polyndmes de degré n n’est pas stable par addition !

REM : Ky[X] = K = {polynomes constants} = {polyndomes de degré 0} U {0} est une droite vectorielle.

PROP : toute famille de polynomes de degrés distincts (ou de valuations distinctes) est libre. On en déduit que si (Py)
est une suite de polynomes telle que deg P, = k, alors (P, P, ..., P,) est une base de K,,[X].
D8

I1T) SUBSTITUTION D'UNE VALEUR DETERMINEE A L'INDETERMINEE X.
1) Définition.
n
DEF : soit z un élément d’un anneau commutatif A qui est en méme temps un K-espace vectoriel et P = Y axX* ; on

k=0
appelle résultat de la substitution de x o lindéterminée X I'élément de A :

n
P(x) = Y apx® = agla + a1 + agz? + ... + apa™
k=0

Exemples: A=R,A=C, A=My(K),A=K[X], A=K

REM 1: P (X) est donc égal a P.

REM 2 : P(Q) (résultat de la substitution de @ & X) dans P peut étre confondu avec P.Q) ; quand il y a ambiguité, on
le notera P o Q.

E3 polynomes de Tchebychev :

la suite de polynomes (T},) définie par To =1, T} = X et Tj,41 = 2XT,, — T,—1 pour n > 1 est telle que

Vne NVl eR T,(cosf) = cos(nd).

De plus, T}, est de degré n et son coefficient dominant est 2"~ (pour n > 1).
2) Relations entre K[X] et P (I, K).

PROP :
(P+Q)(z) = P(z) +Q(x)
VP,Q € K[X] Vx € K (PQ) (x) =P (2)Q(x)
(PoQ)(z)[ou (P(Q)) (x)] = P(Q(x))

D9

DEF : si P est un polynome formel € K[X], la fonction polynome définie sur I associée a P est la fonction f :

I—- K
{ x+— P(x)

PROP : I'application ® de K[X] dans P (I, K) qui & tout polynoéme associe cette fonction polynéme, qui est surjective
par définition, est aussi un morphisme d’anneaux.

D10
IV) DIVISIBILITE DANS K[X].
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1) Relation de divisibilité.
DEF : soit A, B deux polyndmes ; on dit que A divise B (ou que A est un diviseur de B ou encore que B est multiple de

A) si
3Q € K[X]/ B = AQ

Notation : A | B.
E2 : déterminer les diviseurs normalisés de X4 — 1

PROP : la relation | est réflexive et transitive, mais non antisymétrique : (A | B et B | A) équivaut a
INe K"/ B=)A
D11
DEF : deux polynomes qui se divisent mutuellement (ce qui équivaut a ce qu'ils different d’une constante multiplicative)
sont dits associés.

REM : tout polyndéme non nul est associé & un unique polynéme unitaire.
CORO : la relation | est une relation d’ordre sur I’ensemble des polynémes unitaires.

2) Division euclidienne des polynomes.
TH : étant donné deux polynomes A, B # 0, il existe un unique couple (@, R) de polyndomes vérifiant

A= BQ@+ R, avec deg R < deg B

Q@ et R sont appelés respectivement le quotient et le reste de la division euclidienne de A par B.
D12 : utilisant, pour 'existence, le lemme : si deg A > deg B, il existe Q1 et A; telsque A = BQ1+A; avec deg A; < deg A.
3) Polyndmes premiers entre eux, PGCD, PPCM.

a) Polyndmes premiers entre eux (ou étrangers).

Si A est un polynoéme, on note M4 = {AU / U € K[X]|} 'ensemble des multiples de A.

LEMME FONDAMENTAL : si A et B sont deux polyndmes non nuls, il existe un unique polynéme D unitaire tel que
Ma+ Mp = Mp.

D13
On note D4 'ensemble des diviseurs normalisés d’un polynome A.

DEF : deux polynéomes A et B € K[X] sont dits premiers entre euz ssi leur seul diviseur commun normalisé est 1 (i. e.
DaNDp = {1})

TH de Bézout : A et B sont premiers entre eux si et seulement s’il existe deux polynémes U et V tels que AU + BV = 1.
D14 (application du lemme).

COROLLAIRE : TH de Gauss : si A divise BC' et A et B sont premiers entre eux, alors A divise C.
D15

b) PGCD.

TH : Soient A, B 2 polynémes non nuls, et D 'unique polynéme normalisé tel que M4 + Mp = Mp
alors

1) D divise A et B et tout diviseur commun a A et B divise D

2) D est I'unique polyndéme normalisé de degré maximum divisant A et B.

3) A/D et B/D sont premiers entre eux.
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D16

DEF : ce polynome D est appelé le PGCD de A et B.

Notation : PGCD (A, B) ou AA B.

PROP : A et B sont premiers entre eux ssi leur PGCD est 1.

D17

REM 1 : on peut poser ANO=0A A= A.

REM 2 : mutatis mutandis, ’algorithme d’Euclide fonctionne chez les polynomes exactement comme chez les entiers.

¢) PPCM.

TH et définition : si A et B sont deux polynémes non nuls, il existe un unique polynéme M unitaire tel que M NMp =
M. M est appelé le PPCM de A et B. Notation : PPCM (A, B) ou AV B.

TH : a) pour A, B, M polynémes non nuls, M normalis¢, on a M = PPCM (A, B) ssi 'une des propriétés suivantes est
réalisée :
1) M est multiple de A et B et tout multiple de A et B est multiple de M
2) M est un multiple de A et B ayant un degré minimal.
3) M divise AB et D = (AB)/M est associé au PGCD de A et B.
D18
Pour 3) utiliser : si Dy divise A et B alors A et B divisent AB/D;.
REM : on a donc PPCM (A, B) .PGCD (A, B) = AB si A et B sont normalisés.
V) RACINES (OU ZEROS) DES POLYNOMES.

1) Définition et premiers exemples.
DEF : soit P € K[X] et ¢y € K ; on dit que x( est une racine (ou un zéro) de P si P (zy) = 0.

PROP : z( est une racine de P ssi le polynome X — zq divise P dans K[X].
D19 (deux méthodes).

Exemples classés suivant le degré n de P :

An=0:

. . b
A n=1:aX 4+ b a une unique racine : -—.
a

An=2:
P = aX?4+bX4¢c=0a (e, ):a(( ............. ) )
A 1 )
- X+2) - =~ ((2aX +b)* - A
“(( +2@) (2a)2> 0 (20X 40" -4
(forme canonique de P, avec A = b? — 4ac)

PROP : P posséde des racines ssi A est un carré dans K ; si c’est le cas, A = 6% et P = a (X — z1) (X — x2) avec

A n =3 : donner un exemple avec 0,1, 2 ou 3 racines distinctes. E3
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REM : on démontre en analyse a partir du théoréme des valeurs intermédiaires que tout polynome & coefficients réels de
degré impair posséde au moins une racine réelle ; par contre, si n = 2p est pair, il existe toujours un polynoéme réel de degré
n sans racine réelle : ...........

2) Nombre de racines d’un polynome.

PROP : un polynéme non nul a toujours un nombre fini de racines distinctes, inférieur ou égal a son degré.
D20

CORO 1 (contraposée de la prop. précédente) : un polyndme ayant une infinité de racines est nul :
3A infini CK /Yo €A P(z)=0=|P=0|(=P(z)=0Vz € K)

Un polynome qui s’annule en une infinité de points s’annule donc partout.

Application : la fonction cos n’est donc pas polynomiale.

CORO 2: siag,a1,....,a, € KetsiVere Ainfini C K a9 + a1z + ... + a,z™ = 0 alors

a=a=..=a,=0
D21
E4

CORO 3 : deux polyndmes égaux en une infinité de points sont égaux (donc égaux en tout point de K) :

JA infini CK /Vz €A P(2)=Q(x) =|P=Q|(= P(x) = Q(z) Yz € K)
D22
Application : si P,@Q € R[X] et Vd € R P(cosf) = Q (cosf), alors P = Q (et donc P(z) = Q(x) Vz € R et méme
P(z)=Q(z) Vz € C).
Al

REM : ce corollaire est parfois appelé le théoréme de prolongation des identités algébriques : si une identité algébrique
(autrement dit, polynomiale) est vérifiée sur un ensemble infini, elle est vérifiée partout.

CORO 4 : lapplication ® définie dans IIT) 2) qui relie les fonctions polynomes et les polynomes formels est bijective des
que la partie I est infinie ; P (I, K') et K[X] sont donc dans ce cas des anneaux isomorphes.

D23

REM : par contre, si I = {x1,x2,...,x,} est finie, application ® n’est pas injective (car 0 et (X — z1)... (X —z,) ont la
méme image), et en fait, toute application de I dans K est polynomiale ! : P(I,K)=A(I,K).

3) Ordre de multiplicité d’une racine.
DEF : on donne P € K[X],z9 € K,k € N; on dit que z est une racine d’ordre de multiplicité k de P si

(X — x0)* divise P mais (X — z0)""" ne divise pas P

Rem :
- "ordre de multiplicité” est raccourci en ”"ordre”, ou ”multiplicité” tout court, suivant les gotits.

- une racine d’ordre 0 n’est pas une racine... (bizarre, mais pratique).
- une racine d’ordre 1 est dite simple, d’ordre 2 : double, d’ordre 3 : triple etc...., d’ordre k : k—uple.

- une racine d’ordre > 2 est dit multiple (ou au moins double).
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CNS : z¢ est une racine d’ordre k de P ssi 3Q € K[X]|/ P = (X — xo)k Q, avec Q (xo) # 0.

D24
PROP : tout polynome P non nul s’écrit de fagon unique sous la forme

P=(X—z1)" (X —22)" ... (X — 1,)"" Q avec Q € K[X] sans racine dans K
D25, E5.

REM : p est le nombre de racines distinctes de P, et ¢ = o1 + g + ... + o, somme des ordres des racines de P est parfois
appelé "nombre de racines de P, en comptant les ordres de multiplicité” .

PROP : sin est le degré de P, p < g < n.
D26, E6

4) Polynome scindé.
DEF : un polynoéme scindé est un polynéme qui est produit de polyndémes du premier degré.
CNS : avec les notations du paragraphe précédent, P est scindé < @ est constant, < ¢ = n (somme des ordres = degré).

REM : si P € R[X], il faut toujours préciser si P est scindé en tant que polynome a coefficients réels (on dit : scindé sur
R), ou en tant que polyndme a coefficients complexes (on dit : scindé sur C).

E7

VI) DERIVATION DES POLYNOMES ; FORMULE DE TAYLOR.

1) Définition.
DEF : le polynoéme dérivé du polynéme P = 3" a, X* est le polynome, noté P’ = > kapr X*~ ' = 3 (k+ 1) ap 1 X"
k>0 k>1 k>0

Les polynomes dérivés successifs se notent de la méme fagon que pour les fonctions.

K[X] - K[X]

On notera D 'application : { P p

Propriétés :
Pl: Pe K& P =0

P2:sideg(P) > 1, deg P =deg P — 1, et mieux, sin > 1, P € K,[X| & P’ € K,,_1[X]
P3: (P+Q) =P +Q ; \P) =AP"; (PQ) = P'Q+ PQ

Pd: (PoQ) =(PoQ)Q
D27

2) Formule de Taylor.
PROP : (formule de Taylor pour les polynomes)
Si degP = n,

" p)
P:P(X):Z% (X*SU())k:P(I'())JrP/(SC())(XfSU())JrPN(SUo)

k=0

(X — 360)2
2

X— n
++ﬂMmL7#L

ou, ce qui revient au méme

n P(k) X2 Xn
Pao+X) = T T Xk = p(ag) P (20) X + P (a0) - 4+ PO (a0)

k=0
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D28
COROLLAIRE :
un polynome de degré n est entiérement déterminé par la connaissance de P (x), P’ (o), P” (o), ..., P (z0)
ES8 : écrire la formule de Taylor pour (1 + X)" et zg = 0.
3) Caractérisation de ordre de multiplicité a partir des polyndémes dérivés.
On donne P € K[X],xo € K,k € N*.

PROP : si zg est racine d’ordre k de P, alors zg est racine d’ordre k — 1 de P’.
D 28 bis

REM 1 : pour k = 1, ceci donne : si zq est racine simple de P, alors xy n’est pas racine de P’.
REM 2 : la réciproque est fausse !
REM 3 : on en déduit évidemment : si xg est racine d’ordre k de P, alors

xg est racine d’ordre k — 1 de P’
x¢ est racine d’ordre k — 2 de P”

xo est racine simple de P
xg n'est pas racine de P

On en déduit la caractérisation :
TH : x( est une racine d’ordre k de P ssi

P(xg) = P/ (z9) = ... = P (xz0) =0 et P (z0) #0
D29
CORO : zg est une racine multiple de P ssi P(xo) = P’ (z9) = 0.

VII) POLYNOMES IRREDUCTIBLES. REDUCTION.

DEF : un polynome P € K[X] est dit réductible ou factorisable (sur K) §’il est divisible par un polynéme non constant
€ K[X] de degré strictement inférieur a son degré. Il est dit irréductible il est non constant et non réductible.

REM : les polyndmes constants ne sont donc ni réductibles, ni irréductibles !

CNS :
1) P est réductible ssi P est produit de deux polynoémes non constants.
2) P est irréductible ssi P est non constant et P n’est divisible que par A et AP avec A € K*.
P
coef dominant de P)'

3) P est irréductible ss’il a exactement deux diviseurs unitaires (1 et
D30

REM 1 : les polynomes irréductibles (resp. réductibles) sont donc aux polyndmes ce que sont les nombres premiers (resp.
composés) aux naturels.

REM 2 : un polynéme de R[X] peut étre irréductible sur R et réductible sur C ; exemple : X2 + 1.

REM 3 : les seuls polynomes scindés irréductibles sont ceux du premier degré.

REM 4 : 1l faut combattre la croyance fortement ancrée consistant a penser qu’un polynéme irréductible est un polynome
sans racine ; en effet :

1) les polynomes du premier degré sont irréductibles, et pourtant ils ont une racine.
2) le polynome (X2 + 1) (X2 4 2) € R[X] est sans racine (réelle) et il est pourtant réductible.
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Par contre :

PROP :
1) un polynome irréductible sur K de degré > 2 n’a pas de racine dans K.
2) un polynéme de degré 2 ou 3 est irréductible ss’il n’a pas de racine.

D31
Exemple : un polynéme a coefficients réels de degré impair > 3 est toujours réductible sur R.
E9

TH de décomposition :

Tout polyndéme non constant se décompose de maniére unique en produit de facteurs irréductibles.
3) Théoréme de D’ALEMBERT-GAUSS.

THEOREME FONDAMENTAL DE L’ALGEBRE, ou THEOREME de D’ALEMBERT-GAUSS (admis) :
Tout polyndéme a coefficients complexes non constant posséde au moins une racine complexe.

CORO 1 : tout polyndéme a coefficients réels non constant posséde au moins une racine complexe.

CORO 2 : Tout polyndéme non nul de degré n a coefficients complexe est scindé sur C : la somme des ordre de ses racines
est égal & n (ou, selon expression consacrée : il posséde n racines complexes en comptant les ordres de multiplicité).
D32

CORO 3 : Les seuls polynomes irréductibles de C[X] sont les polynomes de degré 1.
D33

4) Application & la réduction des polynomes a coefficients réels.
a) Conjugué d’un polyndome & coefficients complexes.

DEF : le conjugué d’un polynome a coefficients complexe est le polynéme obtenu en conjuguant les coefficients :

n n
si P = Zaka’, le conjugué de P est P = Za_ka
k=0 k=0

Propriétés pour P,Q € C[X] :

Pl1:VzeCP(z)=P(2)

P2: P+Q=P+Q,PQ=PQ
P3: PERX]& P=P

P4:si Pe C[X], P+ P,PP € R[X].

P5 : zy € C est racine de P d’ordre a < Zg est racine de P d’ordre .
D34

COROLLAIRE : si zg est racine complexe non réelle d’ordre o d’un polynome réel P , alors Zg est aussi racine de P d’ordre
a et P est donc divisible par le polyndéme a coefficients réels :

(X = 20)" (X = 7)" = (X2 = 2Re (20) X + |20")”

Ex : trouver les polynomes réels de degré 4 ayant 3 — ¢ pour racine double.
b) Réduction des polynomes a coefficient réels

COROLLAIRE du Théoréme de D’Alembert pour les polynémes a coefficients réels :
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Tout polynoéme de degré n, de coefficient dominant a,, & coefficients réels posséde sur C une décomposition unique sous
la forme
P=a,(X—21) . (X —2,)" (X —2)" (X =) . (X —2) (X —7)°"

Les x; sont les p racines réelles de P, d’ordres respectifs «;.
Les z; et Z; sont les 2r racines non réelles de P, d’ordres respectifs ;.

Eton a: . .
0= 2)
i=1 i=1
D35

Sur R on obtient donc la décomposition
P=an(X —21)" . (X —,)% (X2 ~2Re(z) X + |z1|2)51 (X2 ~2Re(z) X + |z,.|2)ﬁr
qui peut s’écrire, avec ’écriture exponentielle des z; : z; = p,e'?:
P=a, (X —21)" ... (X —2,)" (X? —2p; cos 1 X + pf‘f)ﬁ1 e (X% =2p, cos0, X + pZ)BT
COROLLAIRE 1 : les polyndmes irréductibles de R[X] sont les polynomes du premier degré et les polyndomes du second
degré de discriminant négatif.

D36

COROLLAIRE 2 : la décomposition en produit de facteurs irréductibles d’un polynome non constant de R[X] est formée
de polynomes du premier degré et de polyndmes du second degré de discriminant négatif.

E10
VIII) RELATIONS ENTRE LES RACINES ET LES COEFFICIENTS D'UN POLYNOME SCINDE.

1) Cas du degré 2
PROP :si P =aX?+bX +c=a(X — 1) (X — 22) est un polynéme scindé de degré 2, alors

2) Cas du degré 3

PROP : P=aX3+bX?+cX +d=a(X —x1) (X — x2) (X — 23) est un polynome scindé de degré 3, alors

S=01 =21 +T2+T3 = .ccennnnen
09 = T1T9 + T2T3 + T3T] = ceervenennens
P =03 = T1X2T3 = «evvvvveennnn

3) Cas général

LEMME : si z1, xo, ..., ,, sont n éléments de K, le développement du produit (X — z1) (X — x3) ... (X — x,,) s’écrit :
X"+ (1) o xnH
k=1

ol oy, est la somme de tous les produits k & k des scalaires z1, 2, ..., 2y, :

n

o = Z Tiy. Ly, = Z Hl'j
1< <ia<...<ip<n Jc [|1 n” jeJ
b)
{ =k

10
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D37
DEF : le nombre o, s’appelle la k-iéme expression symétrique élémentaire des nombres x1, o, ..., Tp.
REM 1 : o1 est la somme des x; et o, est leur produit.

REM 2 : le nombre de produits z;, ...z;, dans ’écriture de oy, vaut < Z

PROP :si P=a, X"+ an, 1 X" 1+ .. +a1 X +ag=a, (X — 1) (X —x3)...(X — z,) est un polynoéme scindé de degré
n, alors les racines de P et ses coefficients sont liés par les relations :

S=01 =1+ ... +Tp = eev.....

n
g = Z Lijqoeedlgy, = covenienninnnns
1<91<i2<...<ip <N

P=0p =T1e.Ly = eveeeeeeeennnnnnn

D38

Ell: casn=14

4) Applications.

a) Calculs d’expressions symétriques des racines, sans avoir besoin de connaitre ces racines.

On constatera que si f (z1, ..., Z,) est une expression symétrique des z1, ..., &, (c’est-a dire que si on permute un x; et un
x; le résultat ne change pas), alors on peut mettre f (x1,...,2,) sous la forme g (o1, ...,04,) .

Comme les o s’expriment & partir des coefficients du polynéme par les relations ci-dessus, on peut donc calculer
f (z1,...,z,) sans avoir besoin de connaitre les valeurs des scalaires x1, ..., .

E12

b) Résolutions de systémes symétriques en les inconnues 1, ..., z, par la détermination des racines d’un polynome.
E13

BLAGUE : M. et Mme Heaumes ont une fille....
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