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I) Vocabulaire et remarques de base.

Soit (un)n�n0 une suite complexe.

On appelle série de terme général un et on note Σun la suite (Sn)n�n0 définie par Sn =
n�

k=n0

uk.

La somme de cette série est la limite éventuelle de la suite (Sn) , notée
+∞�

k=n0

uk, ou
�

k�n0

uk.

Lorsque cette limite existe et est finie, on dit que la série est convergente, divergente dans le cas contraire.

Les termes Sn =
n�

k=n0

uk sont appelés les sommes partielles de la série Σun.

La nature de la série Σun est son caractère convergent ou divergent.

REM 1 : faire attention que
- Σun est une suite (et n est ici une variable muette), donc une fonction de N vers C

-
n�

k=n0

uk est un nombre (et n n’est pas muette, par contre k l’est)

-
+∞�

n=n0

un est un nombre (et n est muette)

On dira par exemple "Σun converge" (abrégé en CV), mais "
�

n�n0

un existe et est finie", ces deux phrases ayant une

signification équivalente.

DANS UN CALCUL, UNE MAJORATION/MINORATION, NE JAMAIS UTILISER Σun mais tout simplement
un ou

n�

k=n0

uk.

REM 2 : si on modifie un nombre fini de termes de la suite (un) , ou si on effectue une translation d’indice, cela ne modifie
pas la nature (convergente ou divergente) de la série , car on aura, APCR, S′n = Sn+ cte ; mais cela modifiera en général la
somme de la série.

Ex : Σun, Σun−1, et Σun+1 sont de même nature, par contre Σun, et Σu2n peuvent être de nature différente.

REM 3 : TOUTE SÉRIE EST UNE SUITE, mais aussi TOUTE SUITE EST UNE SÉRIE.
Plus précisément : les termes de la suite (un)n�n0 sont les sommes partielles de la série de terme général vn définie par

vn0 = un0

vn = un − un−1 pour n � n0 + 1

En conséquence
(un) et Σ(un − un−1) (ou Σ(un+1 − un)) sont de même nature

D1
Exemples E1 :

�
n

n+ 1

�
et Σ

1

n (n+ 1)
sont de même nature

(lnn) et Σ ln
�
1 +

1

n

�
sont de même nature

REM 4 : on a évidemment , si λ est un réel non nul

Σλun CV⇐⇒ Σun CV

On commencera donc toujours l’étude de la convergence d’une série par la simplification éventuelle d’un terme multipli-
catif.
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TH et DEF : Si la SÉRIE de terme général un est convergente, alors la SUITE (un) tend vers 0 MAIS LA RÉCIPROQUE
EST FAUSSE.
Une série dont le terme général ne tend pas vers 0 sera dite grossièrement divergente.
D2

II) Exemples fondamentaux.
1) Séries géométriques.

Ce sont les séries dont le terme général est celui d’une suite géométrique.

Alors Sn =
n�

k=n0

un0q
k−n0 = un0

1− qn−n0+1

1− q
si q �= 1 et :

- soit |q| � 1 et la série diverge grossièrement
- soit |q| < 1 et la série converge. La somme vaut

un0
1− q

En particulier

+∞�

n=0

xn = ...............(|x| < 1)

+∞�

n=1

xn = ...............(|x| < 1)

+∞�

n=1

1

xn
= ...............(|x| > 1)

On retrouve par exemple que
1

9
= 0, 111..., d’où 1 = 0, 999....

D3
2) Séries de Riemann.

Ce sont les séries de terme général du type
1

nα
.

Elles sont grossièrement divergentes ssi ...................

Par contre, dans le cas α > 0, on a vu dans le cours sur les suites qu’elles étaient divergentes pour α.......... et convergentes
pour α � 2.

TH de convergence des séries de Riemann :

Σ
1

nα
converge ssi α > 1

Démontré plus loin deux fois.

La fonction qui à α > 1 fait correspondre ζ (α) =
+∞�

n=1

1

nα
s’appelle la fonction dzéta (de Riemann).

III) Séries à termes positifs (SATP), premiers critères de convergence.

Intérêt : la suite des sommes partielles d’une SATP est croissante donc possède toujours une limite, finie ou infinie.

Donc UNE SATP EST SOIT CONVERGENTE, SOIT DIVERGENTE DE SOMME INFINIE.

REM 1 : le cas d’une série à termes (tous) négatifs (APCR), se ramène à ce cas, bien sûr.

REM 2 : d’après le lemme de Césaro (exercice 11 sur les suites), si une SATP diverge (non grossièrement) vers l’infini,
on a tout de même :

Sn << n
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Pour déterminer la nature d’une SATP, on va comparer le terme général avec celui d’une série connue, en utilisant le

T1 : TEST DE COMPARAISON (simple) pour une SATP :

Si, APCR, on a un � vn alors Σvn CV =⇒ Σun CV

REM : par contraposée, on obtient

Si, APCR, on a un � vn alors Σun DV =⇒ Σvn DV

D4

E1 : un =
1

(lnn)n
, un =

1! + 2! + ...+ n!

(n+ p)!
pour p = 1 ou 2.

On déduit du test de comparaison simple le

T’1 : TEST DE COMPARAISON par domination pour une SATP :

Si un = O (vn) (à fortiori si un = o (vn) ,soit un << vn) Σvn CV =⇒ Σun CV

D5
dont on déduit le
T2 : CRITÈRE DE L’ÉQUIVALENT pour une SATP :

Si un ∼ vn alors Σun CV⇔ Σvn CV

D6

REM 1 : par contraposée, on obtient

Si un ∼ vn alors Σun DV⇔ Σvn DV

REM 2 : CE CRITÈRE EST FAUX POUR DES SÉRIES DONT LE TG N’EST PAS DE SIGNE CONSTANT !!!!
Cf contre-exemple en exercice.

CONSEIL : lors de l’étude de la convergence d’une SATP, toujours commencer par chercher un équivalent simple du TG.

APPLICATIONS :
- démonstration de la divergence de la série harmonique en utilisant ln (n+ 1)− lnn ∼ 1

n

- démonstration de la convergence de Σ
1

nα
pour α > 1 en utilisant

�
1

nα−1
− 1

(n+ 1)α−1

�

∼ α− 1
nα

D7
T"1 : TEST DE COMPARAISON FORTE pour une SATP :

Si on a un << vn alors Σvn CV =⇒ Σun CV et Σun DV =⇒ Σvn DV

En particulier

Si un ≪ 1

nα
avec α > 1 alors Σun CV

Si un ≫ 1

nα
avec α � 1 alors Σun DV
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D8

APPLICATION aux séries de Bertrand : Σ
1

nα (lnn)
β

Commencer par Σ
1

(lnn)10
, Σ

1√
n lnn

,Σ
(lnn)10

n2
.

PROP :

Si α > 1 alors Σ
1

nα (lnn)β
CV

Si α < 1 alors Σ
1

nα (lnn)
β
DV

Le cas α = 1 sera rêglé par une comparaison avec une intégrale.
D9
T3 (hors programme) : rêgle de D’Alembert.

Si un > 0 APCR, et lim
un+1

un
= l, alors

Si l > 1, alors limun = +∞,donc Σun est grossièrement divergente

Si l < 1, alors Σun est convergente.

ATTENTION : si l = 1,(cas douteux de D’alembert) on ne peut rien dire.

D10
REM : le cas douteux de D’Alembert ne l’est pas si l = 1+ (autrement dit si la limite se fait par valeurs supérieures) ; en

effet, la suite (un) est alors croissante APCR et donc ne tend pas vers 0 !

APPLICATIONS aux séries du type Σ
nα

an
(a > 0, α quelconque).

PROP :
Σ
nα

an
CV ⇔ a < 1 ou a = 1 et ..........

D11
IV) SATP : comparaison avec une intégrale.

Données : f fonction continue, positive, décroissante sur [a,+∞[ , lim
+∞

f = 0, F primitive de f sur [a,+∞[.
On s’intéresse à la série

Σf (n)

de sommes partielles

Sn =
n�

k=n0

f (k) , n0 � a

On a alors l’encadrement
n�

n0

f + f (n) � Sn �

n�

n0

f + f (n0)

D12
dont on déduit la propriété

+∞�

n=n0

f (n) < +∞⇔
+∞�

n0

f < +∞ ,

+∞�

n=n0

f (n) = +∞⇔
+∞�

n0

f = +∞

Autrement dit

La série Σf (n) et l’intégrale impropre

+∞�
f sont de même nature
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Plus précisément

si I =

+∞�

n0

f < +∞, alors I �

+∞�

n=n0

f (n) � I + f (n0)

D’où, si Rn =
+∞�

k=n+1

f (k) ,

+∞�

n

f − f (n) � Rn �

+∞�

n

f , et on aura en général Rn ∼
+∞�

n

f

d’autre part :

si

+∞�

n0

f = +∞ alors Sn ∼ F (n)

D13

Application aux séries de Riemann (deuxième démonstration) :

PROP :
1) si α > 1, alors Σ

1

nα
est convergente et

1

α− 1 �
+∞�

n=1

1

na
= ζ (α) � 1 +

1

α− 1

et de plus
+∞�

k=n+1

1

kα
∼ 1

α− 1
1

nα−1

REM : on en déduit :
lim
α

>
−→1

ζ (α) = .....

2) si α < 1, alors Σ
1

nα
est divergente et

n�

k=1

1

kα
∼ n1−α

1− α

3) si α = 1, alors Σ
1

n
est divergente et

lnn �
n�

k=1

1

k
= hn � lnn+ 1

D14

Application aux séries de Bertrand Σ
1

n (lnn)β
:

La série Σ
1

n (lnn)
β
converge ssi β > 1.

(vient de
� x
2

dx

x (lnx)β
=
� lnx
ln 2

du

uβ
).

ATTENTION : la décroissance de f dans le théorème ci dessus est importante :

Exemple de fonction continue positive sur [1,+∞[ telle que Σf (n) converge , et
+∞�

f diverge :
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Exemple de fonction continue positive sur [1,+∞[ telle que Σf (n) diverge , et
+∞�

f converge :

V) Séries à termes quelconques ; convergence absolue.

TH de convergence absolue : soit Σun une série de terme général complexe ; alors

Σ |un| CV⇒ Σun CV

Et on a :

�����

+∞�

n=n0

un

�����
�

+∞�

n=n0

|un| .

D15

D’où la

DEF : si
+∞�

n=n0

|un| < +∞, Σun est dite "absolument convergente" (abrégé en AC).

et si
+∞�

n=n0

un existe sans que
+∞�

n=n0

|un| < +∞, alors la série est dite "semi-convergente" (abrégé en SC, voir des exemples

en VII))

MORALITE : on commencera toujours l’étude d’une série à termes quelconques par l’étude de la série des valeurs absolues.

VI) Opérations sur les séries.

Avec des notations "évidentes", on a les propriétés :

λAC=AC, λSC=SC si λ �= 0,AC+AC=AC, AC+SC=SC, SC+SC=CV (AC ou SC), DV+CV=DV, DV+DV=??????

D16

VII) Exemples de séries semi-convergentes.

TH des séries alternées (hors programme) :

Si (an) est une suite positive, de limite nulle et DECROISSANTE, alors la série de terme général (−1)n an est convergente
; si donc Σan est divergente, Σ(−1)n an est semi-convergente.

D17

Application classique : la série harmonique alternée est semi-convergente.
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