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I) Vocabulaire et remarques de base.

Soit (uy,) une suite complexe.

nzng

n
On appelle série de terme général u,, et on note Xu, la suite (Sn)n>n0 définie par S,, = Z U,

k=ng

“+o00
La somme de cette série est la limite éventuelle de la suite (S,,), notée Z U, OU Z Uk
k=ng k>=ng

Lorsque cette limite existe et est finie, on dit que la série est convergente, divergente dans le cas contraire.
n

Les termes S,, = Z uj sont appelés les sommes partielles de la série Su,,.

k=ngo
La nature de la série Yu,, est son caractére convergent ou divergent.

REM 1 : faire attention que

- Yu, est une suite (et n est ici une variable muette), donc une fonction de N vers C
n

- Z uy est un nombre (et n n’est pas muette, par contre k 1’est)

k=ng
—+o0

- Z Uy est un nombre (et n est muette)

n=ngo

On dira par exemple "Yu,, converge" (abrégé en CV), mais " u, existe et est finie", ces deux phrases ayant une
b) )
n=no
signification équivalente.

DANS UN CALCUL, UNE MAJORATION/MINORATION, NE JAMAIS UTILISER Su,, mais tout simplement

n
Uy OU E Uk

k=ngo
REM 2 : si on modifie un nombre fini de termes de la suite (u,, ), ou si on effectue une translation d’indice, cela ne modifie
pas la nature (convergente ou divergente) de la série , car on aura, APCR, S/ =S, + cte ; mais cela modifiera en général la
somme de la série.

Ex: Yuy, Yun—1, et Xu,4+1 sont de méme nature, par contre Xu,, et Yua, peuvent étre de nature différente.

REM 3 : TOUTE SERIE EST UNE SUITE, mais aussi TOUTE SUITE EST UNE SERIE.
Plus précisément : les termes de la suite (uy,) sont les sommes partielles de la série de terme général v,, définie par

n=no
Uny = Upg
Up = Up— Up_1 Pourn =ng+1

En conséquence
(un) et X (up —up—1) (ou X (Upt1 — uy)) sont de méme nature

D1
Exemples E1 :

n 1
et X——— sont de méme nature
n+1 n(n+1)

1
(Inn) et X1n (1 + E) sont de méme nature

REM 4 : on a évidemment , si A est un réel non nul
Y\, CV <= Xu, CV

On commencera donc toujours 1’étude de la convergence d’une série par la simplification éventuelle d’un terme multipli-
catif.



COURS MPSI B 4. SERIES R. FERREOL 16/17

TH et DEF : Si la SERIE de terme général u,, est convergente, alors la SUITE (uy) tend vers 0 MAIS LA RECIPROQUE
EST FAUSSE.

Une série dont le terme général ne tend pas vers 0 sera dite grossiérement divergente.

D2

IT) Exemples fondamentaux.
1) Séries géométriques.
Ce sont les séries dont le terme général est celui d’une suite géométrique.

n
1— qnfnngl
_ k—no —
Alors S, = Z Upq M0 = Une™ o
k:’n()
- soit |q| > 1 et la série diverge grossiérement
- soit |g| < 1 et la série converge. La somme vaut

sig#1let:

Uny

En particulier

+oo
Zw" = e (lz] < 1)
n=0

+oo
Zx" = e (lz] < 1)
n=1

+o0 1
— = (lx] > 1)
x
n=1
1 _—
On retrouve par exemple que 9= 0,111..., d’ou 1 = 0,999....
D3
2) Seéries de Riemann.
1
Ce sont les séries de terme général du type —.
n
Elles sont grossiérement divergentes ssi ...................
Par contre, dans le cas a > 0, on a vu dans le cours sur les suites qu’elles étaient divergentes pour a.......... et convergentes

pour o > 2.

TH de convergence des séries de Riemann :
1 .
Y— converge ssi a > 1
n

Démontré plus loin deux fois.

+oo
La fonction qui & a > 1 fait correspondre ¢ (a)) = Z—a s’appelle la fonction dzéta (de Riemann).
n

n=1
IIT) Séries a termes positifs (SATP), premiers critéres de convergence.

Intérét : la suite des sommes partielles d’'une SATP est croissante donc posséde toujours une limite, finie ou infinie.
Donc UNE SATP EST SOIT CONVERGENTE, SOIT DIVERGENTE DE SOMME INFINIE.

REM 1 : le cas d’une série a termes (tous) négatifs (APCR), se rameéne a ce cas, bien sir.

REM 2 : d’apres le lemme de Césaro (exercice 11 sur les suites), si une SATP diverge (non grossiérement) vers I'infini,

on a tout de méme :
S, <<n
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Pour déterminer la nature d’'une SATP, on va comparer le terme général avec celui d’une série connue, en utilisant le

T1: TEST DE COMPARAISON (simple) pour une SATP :

Si, APCR, on a u,, < v, alors ¥v, CV = Xu, CV
REM : par contraposée, on obtient

Si, APCR, on a u,, < v, alors Yu, DV — v, DV
D4

1 4204 . +nl
=——+————— pourp=1ou2.

El: n = 77 _\n> Un
U= any™ (n+p)!

On déduit du test de comparaison simple le
T’1 : TEST DE COMPARAISON par domination pour une SATP :

Si u, = O (vy,) (& fortiori si uy, = 0 (vy,) ,s0it u, << vy,) Y, CV= Xu, CV
D5

dont on dé@uit le )
T2 : CRITERE DE L’EQUIVALENT pour une SATP :

Si u,, ~ v, alors Yu, CV & X, CV
D6

REM 1 : par contraposée, on obtient
Si u, ~ v, alors Yu, DV & Xuv,, DV

REM 2 : CE CRITERE EST FAUX POUR DES SERIES DONT LE TG N’EST PAS DE SIGNE CONSTANT !!!!
Cf contre-exemple en exercice.

CONSEIL : lors de I’étude de la convergence d'une SATP, toujours commencer par chercher un équivalent simple du TG.
APPLICATIONS :

1
- démonstration de la divergence de la série harmonique en utilisant In (n 4+ 1) —Ilnn ~ —
n

1
- démonstration de la convergence de ¥— pour « > 1 en utilisant
na
1 1 a—1
no—1 (n+ 1)a—1 no
D7

T"1 : TEST DE COMPARAISON FORTE pour une SATP :

Sion au, << v, alors v, CV— Xu, CV et Xu, DV — Xuv, DV

En particulier

1
Siu, < —avec a > 1 alors Yu,, CV
n

1
Siu, > —avec a < 1 alors Yu,, DV
n
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D8
1
APPLICATION aux séries de Bertrand : E—B
n® (Inn)
1 1 Inn)'
Commencer par % o) > , (Inn)
(Inn) vnlnn n?

PROP :
Sia > 1alorsX® 7
n® (Inn)
Sia < 1lalorsX ! 3
n® (Inn)

Le cas a = 1 sera réglé par une comparaison avec une intégrale.
D9

T3 (hors programme) : régle de D’Alembert.

Unp+1

Si uy, > 0 APCR, et lim = [, alors

Un
Sil

Sil < 1,alors Xu, est convergente.

2%

DV

> 1, alors limu, = 4o00,donc Xu,, est grossierement divergente

ATTENTION : si [ = 1,(cas douteux de D’alembert) on ne peut rien dire.

D10

REM : le cas douteux de D’Alembert ne 'est pas si I = 17 (autrement dit si la limite se fait par valeurs supérieures) ; en

effet, la suite (u,) est alors croissante APCR et donc ne tend pas vers 0 !

[e%
APPLICATIONS aux séries du type E% (a > 0, a quelconque).
PROP :

(0%

Zn—CV Sa<loua=1et
a'n,

D11
IV) SATP : comparaison avec une intégrale.

Données : f fonction continue, positive, décroissante sur [a, +00] , 1+im f =0, F primitive de f sur [a, +00].
(o]

On s’intéresse a la série
f(n)
de sommes partielles
n
Sn: Zf(k)7n0>a
k=ng

On a alors ’encadrement

D12
dont on déduit la propriété

+oo
> )

n=ngo

+oo
Zf(n)<+oo<:>

n=ngo

+o00o
/f<+oo,
no

+o00
:+oo<:>/f:+oo
no

Autrement dit

“+o0
La série X f (n) et I'intégrale impropre / f

sont de méme nature
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Plus précisément

+oo +o0
sil= /f<+oo, alors | I < Zf(n)<1+f(no)

n=ng

no

+oo +oo +oo +oo
Dou, si R, = Z f k), / f—=f(n) <R, < / /1, et on aura en général R, ~ / S
n n

k=n+1 n

d’autre part :

—+o0
si / f =400 alors S, ~ F (n)
no

D13
Application aux séries de Riemann (deuxiéme démonstration) :

PROP : 1
1) si > 1, alors Y— est convergente et
n

1 =X 1
— < — _ <14+ —
a—1 nzz:lna ¢(a) T 1
et de plus
=X 11
T _ a—1
k—7z+1k a—1n
REM : on en déduit :
lim ¢ (a) =.....
a—=s1
. 1 .
2) si @ < 1, alors ¥— est divergente et
nD[
kzlk“ -«

1
3) si a =1, alors ¥— est divergente et
n

k=1
D14
.. . 1
Application aux séries de Bertrand E—B :
n(Inn)
La série ¥ ———— converge ssi g>1
n (Inn)

dz ez @)
z) B n2 o5/
ATTENTION : la décroissance de f dans le théoréme ci dessus est importante :

(vient de [
T

+oo
Exemple de fonction continue positive sur [1,4+o00[ telle que X f (n) converge , et / f diverge :
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+oo
Exemple de fonction continue positive sur [1, 400 telle que X f (n) diverge , et / f converge :

V) Séries a termes quelconques ; convergence absolue.

TH de convergence absolue : soit Xu,, une série de terme général complexe ; alors

Y|u,| CV = Xu, CV

+o00o +o00
Et on a: Zun < Z |t -
n=ng n=ng
D15
D’ou la
+oo
DEF : si Z [un| < 400, Zu, est dite "absolument convergente" (abrégé en AC).
n=no
—+o0 —+o0
et si Z Uy, existe sans que Z |un| < 400, alors la série est dite "semi-convergente" (abrégé en SC, voir des exemples
n=ng n=ngo
en VII))

MORALITE : on commencera toujours I’étude d’une série a termes quelconques par I’étude de la série des valeurs absolues.
VI) Opérations sur les séries.

Avec des notations "évidentes", on a les propriétés :

D16
VII) Exemples de séries semi-convergentes.
TH des séries alternées (hors programme) :

Si (a,,) est une suite positive, de limite nulle et DECROISSANTE, alors la série de terme général (—1)" a,, est convergente
; si donc Xa, est divergente, 3 (—1)" a,, est semi-convergente.

D17

Application classique : la série harmonique alternée est semi-convergente.



