CONCOURS TA A EPREUVES COMMUNES 1994
EPREUVE DE MATHEMATIQUES 2 : CORRIGE
PARTIE I : formules de Newton

I. 1.
Onaeneffet : 0= 3 P(z) = > Yaizi = Ya; Y zf = > a;S;.
i=0 k=1 i=0

k=1 k=1t=0

3

n n . n n . n n
Et de méme : 0= >z, "P(z1) = > Zaizz_"ﬂ =>a; > zz_"ﬂ = > aiSp—nti = Y, An—iSp—i.
k=1 k=1i=0 i=0 k=1 i=0 i=0

b% — 2ac

b 1 /b?
1.2. Pourn=2: 5y = —— et comme aSs + bS1 +2c =0, So = — (— —20> = 5
a a\ a

1 (2abc—0b> b 3abc — b?
Comme aS3 +b5’2+cS’1:O,S’3:E<%+—C> :L.

a

a a a3

PARTIE 1 : Caleul de 3" cot? —™
k=1 2n + 1

II.1. On a dune part : (em)Q"+1 = '@t — cos(2n 4 1) 2 + isin(2n + 1) 2, et d’autre part : (em)Qn—H
sin?" 'z (cot z +4)*" ! dotr :

. 2n—+1 n
sin(2n+ 1)z 2041 ko ko k —k k k
i, Im ((cot z+1i)" ) =Im Z Ch 1@ eothz | = Z (—1)(" ) O3k cot®  x
k=0 k=0

sin(2n+ 1)z
sin? g

P est de degré n, et son coefficient dominant est C31,, = 2n+ 1.

Donc = P (cot’>z), avec P = Y (—1)(n=h) C3h Xk
k=0

sin km . . . L
= = 0 ; la fonction cot étant strictement décroissante

2n+ 1> gin2nt! L
2n+1

II.2. Pour 1<k <n,ona: P (cot2

10, [, les n réels cot? pour 1 < k < n sont tous distincts et constituent donc les racines du polynéme P.

T
2n+1

On peut donc écrire P = (2n+ 1) [] (X — cot?
k=1

—C2" 72 on+1)2n(2n—1 on —1
I1.3. Le nombre S; est la somme des racines de P, donc S1 = — ntl _ (2n +1)2n (2n ) = n(2n )
n+1 6(2n+1) 3
n(n+1)

—— =cot’z+1,5 =S1+n=2——".
sin® x 3

Comme
L L i ~2it1

IL4. Pour p < n, la relation )" a,—;Sp—; =0 (avec la convention Sy = p) s’écrit ici Y (—1)" C5111S,—; =0, d'on
i=0 i=0

P
2n+1)8, =Y (-1 C5 S

i=1

S
I1.5. La suite <n220> N = (p)n21 est convergente.

nz
Sp—i
nQ(P_i)

Supposons que pour 1 < i < p les suites ( > sont convergentes vers respectivement o,_; ; alors, con
n>1

2141
CV2n—$—1 Sp—i

@n + 1) n% 20— et comme

Sp D i+1
Bt -1
=2

(2n)2i+1
C3ith (2i 4 1)! 2%
"2t 0 =) . _Z
(2n + 1) n2t n—4oo 202l pojoo (2i + 1)!



tim S = $ (a2
m — = — e
n—-+oo nQ;D i=1 (22 =+ 1)'
On a bien la relation :

ap—;, ce qui acheve la récurrence.

p 1 22i
ap =1 (-1) [
i—1
Sl 2n —1 2
n2 - 3n n—>_-§)-oo “r =3
22 208
T
22 24 N 263 64
« g ——a +=3=—
R TR T R VT
5 km o km \”
n % g T g n kr P kr p_n k
11.6. S’ = = (cot2—+1> = C' cot?t =>CF S cot? —
P 12:21 in2? km 1;::1 2n+1 kgli:O b 2n+1 z;) pk§1 2n
2n+1
P
ZZ;C;SZ+H

S’ p Q.
Donc lim —£Z = lim (ﬁ +>.C Si + ;> = lim (Sp > = a,.
i=1

n—-+oon2P n—-+oo \ n2P Pn2p n2p—1 n—-+oo \ n2P

1
PARTIE III. Un premier calcul de ¢ (2p) = > —

n>1n%P
T, . s 1 1
IIL.1. Pour z € [0, =],sinz < 2 < tanz, donc pour z €]0, =[,cotx < — < ——;
2 2 T  sinz
Donc N . N
km 1 1
S Foy Lo
k=1 n+1 k=1 km ! k=1sin?? ki
on + 1 2n+1
soit ) . )
T P 1 T P
< — = 4
<2n+1> p\;/ﬁ <"(p)\<2n+1> P
d’out ) ) p
P S P
L 2p < Cn (2]7) X 599 -

2p
1
II1.2. Comme (n + §> ~ n%_ on en déduit

n—-4oo

n ﬂ.
7T2p kz cot? 27’L— 7T2p
_ e : =1 +1 |17
g (2p) - ap 22;0 - ngrﬂ{loo n2p 22;0
2 72 72 8 mt m 64 7o 76
wtrouve ¢ (2) = 57 =15 W= 3515 =| 90 ¢ ©) = 9561 | 015
1
PARTIE IV : Un deuxiéme calcul de ¢ (2p) = > —5
n>1M
IV. 1. ao (f) = ! J7_cot (t )dt—sm(ﬂy)'
o OV T or Jen yrar= T
2 1 (sin(ry+ nm) = sin(ry — nm) (-=n" . 2y
Pour n > 1, an(f)Z;fO cot (ty) cos (nt) dt = - ( P + p— = sin (7y) Ry

Et les by, (f) sont nuls car f est paire.

f étant de classe C'! sur [—m, 7] et continue sur R, f est bien la somme de sa série de Fourier.



1 1 2
IV.2. On peut donc écrire f (t) = - sin (7y) (; + > (—1)" cos (nt) y27yn
nz=1 -

1 1 2
Faisant ¢t = 7, on obtient cos (7y) = —sin(7wy) | — + > 27y2 , ot
™ Y w1y —n

1[1 2
cot(my) = —| -+ 227% (développement d'Euler en ”éléments simples”)
g Yy n>1y -n

1 x2P .
IV. 3. =3 ( )2p pour |x| < nr ; donc en utilisant le développement ci-dessus avec my = x, on obtient, p
x p=0(N7T

n2m2

222 1
rcotxr = 1— 2—72

2p
= 1- ZZQ—%(translation d’indice : nouveau p = ancien p + 1)

2p 2p
= 1- E E 2(—2 (interversion des signes sommes car 2———

0
nm)P (nm)?® >0)

IV4. : Dapres 3), h(z)=1— >

2p) %P pour x €] — 2w, 27] ; h est donc de classe C™ sur | — 27, 27| con
2
p>1(2m)7F

somme d’une série entiere.

IV.5. D’apres la formule de Taylor, h (z) = By — Y. B,x?P ; donc, par 'unicité du développement :
p=1

g (2]7) = %((Q;Tp))| BP

22 1 (2m)%F
IV.6. On identifie les 2 expressions de ¢ (2p) : Wosy = 5 o) B,, donc
1 2%
— - B
N O T

Or la relation de IL.5. peut s’écrire :

p—1 1

p Qp k—1 Qg p
_1)y Ze _ _1 Sk _
( ) 22p 1;1( ) (2p—2k’+1)! 22k (2p+ 1)!

soit

i (_1)k—1 b e p
2 2p 2kt 1122 (2p+ 1)



1 24k
En remplacant oy par 5@31“ on obtient bien :

p
ST (-nF ek 2B =2p
k=1

PARTIE V : Justification de l'interversion des signes Y.

n
V.1. v, = > ug,yp ; (vp,) est croissante car uy, >0 Vk,p ;
k._

n
or ug, < Sk, donc v, < D5 <5 ;
k=1

(vn) est donc majorée : elle converge vers T, = > Uy p
nz=1
P P P
V.2. Soit w, = > T ; (wp) est croissante, et wy, = > > Upk = 2. 2 Uy (il sagit ici d’une somme finie de sé
k=1 k=1n>1 n>1k=1
convergentes)

P

Or Y upi < Sy, donc wy, < .5, =5 ; (wp) est croissante majorée : elle converge vers S’ < S.
k=1 n>1

Mais si on échange maintenant les 2 indices de u,, , (en posant v, , = up.), le méme raisonnement va aboutir & S' <

donc S = 5’, CQFD.



