
CONCOURS TA A ÉPREUVES COMMUNES 1994

ÉPREUVE DE MATHÉMATIQUES 2 : CORRIGÉ

PARTIE I : formules de Newton

I. 1.

On a en effet : 0 =
n
∑

k=1

P (zk) =
n
∑

k=1

n
∑

i=0

aiz
i
k =

n
∑

i=0

ai

n
∑

k=1

zi
k =

n
∑

i=0

aiSi.

Et de même : 0 =
n
∑

k=1

z
p−n

k
P (zk) =

n
∑

k=1

n
∑

i=0

aiz
p−n+i

k
=

n
∑

i=0

ai

n
∑

k=1

z
p−n+i

k
=

n
∑

i=0

aiSp−n+i =
n
∑

i=0

an−iSp−i.

I.2. Pour n = 2 : S1 = −
b

a
et comme aS2 + bS1 + 2c = 0, S2 =

1

a

(

b2

a
− 2c

)

=
b2 − 2ac

a2
.

Comme aS3 + bS2 + cS1 = 0, S3 =
1

a

(

2abc − b3

a2
+

bc

a

)

=
3abc − b3

a3
.

PARTIE II : Calcul de
n
∑

k=1

cot2p kπ

2n + 1

II.1. On a d’une part :
(

eix
)2n+1

= ei(2n+1)x = cos (2n + 1) x + i sin (2n + 1) x, et d’autre part :
(

eix
)2n+1

=

sin2n+1 x (cot x + i)2n+1
, d’où :

sin (2n + 1) x

sin2n+1 x
= Im

(

(cot x + i)
2n+1

)

= Im

(

2n+1
∑

k=0

Ck
2n+1i

2n+1−k cotk x

)

=

n
∑

k=0

(−1)
(n−k)

C2k
2n+1 cot2k x

Donc
sin (2n + 1) x

sin2n+1 x
= P

(

cot2 x
)

, avec P =
n
∑

k=0

(−1)
(n−k)

C2k
2n+1X

k.

P est de degré n, et son coefficient dominant est C2n
2n+1 = 2n + 1.

II.2. Pour 1 6 k 6 n, on a : P

(

cot2
kπ

2n + 1

)

=
sin kπ

sin2n+1 kπ

2n + 1

= 0 ; la fonction cot étant strictement décroissante sur

]0, π[, les n réels cot2
kπ

2n + 1
pour 1 6 k 6 n sont tous distincts et constituent donc les racines du polynôme P.

On peut donc écrire P = (2n + 1)
n
∏

k=1

(

X − cot2
kπ

2n + 1

)

.

II.3. Le nombre S1 est la somme des racines de P , donc S1 = −
−C2n−2

2n+1

2n + 1
=

(2n + 1) 2n (2n− 1)

6 (2n + 1)
=

n (2n − 1)

3
.

Comme
1

sin2 x
= cot2 x + 1, S′

1 = S1 + n = 2
n (n + 1)

3
.

II.4. Pour p 6 n, la relation
p
∑

i=0
an−iSp−i = 0 (avec la convention S0 = p) s’écrit ici

p
∑

i=0
(−1)

i
C2i+1

2n+1Sp−i = 0, d’où

(2n + 1) Sp =

p
∑

i=1

(−1)
i+1

C2i+1
2n+1Sp−i

II.5. La suite

(

S0

n2×0

)

n>1

= (p)
n>1 est convergente.

Supposons que pour 1 6 i 6 p les suites

(

Sp−i

n2(p−i)

)

n>1

sont convergentes vers respectivement αp−i ; alors, comme

Sp

n2p
=

p
∑

i=1
(−1)

i+1 C2i+1
2n+1

(2n + 1) n2i

Sp−i

n2(p−i)
et comme

C2i+1
2n+1

(2n + 1) n2i
∼

n→+∞

(2n)
2i+1

(2i + 1)!

2n2i+1
→

n→+∞

22i

(2i + 1)!
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lim
n→+∞

Sp

n2p
=

p
∑

i=1

(−1)
i+1 22i

(2i + 1)!
αp−i, ce qui achève la récurrence.

On a bien la relation :

αp =

p
∑

i=1

(−1)
i+1 22i

(2i + 1)!
αp−i

S1

n2
=

2n − 1

3n
→

n→+∞

α1 =
2

3

α2 =
22

3!
α1 −

24

5!
2 =

8

45

α3 =
22

3!
α2 −

24

5!
α1 +

26

7!
3 =

64

945

II.6. S′

p =
n
∑

k=1

(

cos2
kπ

2n + 1
+ sin2 kπ

2n + 1

)p

sin2p kπ

2n + 1

=
n
∑

k=1

(

cot2
kπ

2n + 1
+ 1

)p

=
n
∑

k=1

p
∑

i=0
Ci

p cot2i
kπ

2n + 1
=

p
∑

i=0
Ci

p

n
∑

k=1

cot2i
kπ

2n + 1

=
p
∑

i=1

Ci
pSi + n.

Donc lim
n→+∞

S′

p

n2p
= lim

n→+∞

(

Sp

n2p
+

p
∑

i=1

Ci
p

Si

n2p
+

1

n2p−1

)

= lim
n→+∞

(

Sp

n2p

)

= αp.

PARTIE III. Un premier calcul de ζ (2p) =
∑

n>1

1

n2p

III.1. Pour x ∈ [0,
π

2
], sinx 6 x 6 tan x, donc pour x ∈]0,

π

2
[, cotx 6

1

x
6

1

sinx
;

Donc
n
∑

k=1

cot2p kπ

2n + 1
6

n
∑

k=1

1
(

kπ

2n + 1

)2p
6

n
∑

k=1

1

sin2p kπ

2n + 1

soit
(

π

2n + 1

)2p

Sp 6

n
∑

k=1

1

k2
= ζn (2p) 6

(

π

2n + 1

)2p

S′

p

d’où
π2p

22p

Sp
(

n +
1

2

)2p
6 ζn (2p) 6

π2p

22p

S′

p
(

n +
1

2

)2p

III.2. Comme

(

n +
1

2

)2p

∼
n→+∞

n2p, on en déduit

ζ (2p) = αp

π2p

22p
=






lim

n→+∞

n
∑

k=1

cot2
kπ

2n + 1
n2p







π2p

22p

On trouve ζ (2) =
2

3

π2

4
=

π2

6
, ζ (4) =

8

45

π4

16
=

π4

90
, ζ (6) =

64

945

π6

64
=

π6

945
.

PARTIE IV : Un deuxième calcul de ζ (2p) =
∑

n>1

1

n2p

IV. 1. a0 (f) =
1

2π

∫ π

−π
cot (ty) dt =

sin (πy)

πy
;

Pour n > 1, an (f) =
2

π

∫ π

0 cot (ty) cos (nt) dt =
1

π

(

sin (πy + nπ)

y + n
+

sin (πy − nπ)

y − n

)

=
(−1)n

π
sin (πy)

2y

y2 − n2
.

Et les bn (f) sont nuls car f est paire.

f étant de classe C1 sur [−π, π] et continue sur R, f est bien la somme de sa série de Fourier.
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IV.2. On peut donc écrire f (t) =
1

π
sin (πy)

(

1

y
+
∑

n>1

(−1)
n

cos (nt)
2y

y2 − n2

)

.

Faisant t = π, on obtient cos (πy) =
1

π
sin (πy)

(

1

y
+
∑

n>1

2y

y2 − n2

)

, d’où

cot (πy) =
1

π





1

y
+
∑

n>1

2y

y2 − n2



 (développement d
′

Euler en ”éléments simples”)

IV. 3.
1

1 −
x2

n2π2

=
∑

p>0

x2p

(nπ)2p
pour |x| < nπ ; donc en utilisant le développement ci-dessus avec πy = x, on obtient, pour

x ∈]0, π[ :

x cot x = 1 −
∑

n>1

2x2

n2π2

1

1 −
x2

n2π2

= 1 −
∑

n>1

∑

p>0

2x2

n2π2

x2p

(nπ)
2p

= 1 −
∑

n>1

∑

p>1

2
x2p

(nπ)
2p

(translation d’indice : nouveau p = ancien p + 1)

= 1 −
∑

p>1

∑

n>1

2
x2p

(nπ)2p
(interversion des signes sommes car 2

x2p

(nπ)2p
> 0)

= 1 −
∑

p>1

2

π2p





∑

n>1

1

n2p



 x2p

= 1 −
∑

p>1

2

π2p
ζ (2p)x2p

IV.4. : D’après 3), h (x) = 1 −
∑

p>1

2

(2π)
2p

ζ (2p) x2p pour x ∈] − 2π, 2π[ ; h est donc de classe C∞ sur ] − 2π, 2π[ comme

somme d’une série entière.

IV.5. D’après la formule de Taylor, h (x) = B0 −
∑

p>1

Bpx
2p ; donc, par l’unicité du développement :

ζ (2p) =
1

2

(2π)2p

(2p)!
Bp

IV.6. On identifie les 2 expressions de ζ (2p) : αp

π2p

22p
=

1

2

(2π)
2p

(2p)!
Bp, donc

αp =
1

2

24p

(2p)!
Bp

Or la relation de II.5. peut s’écrire :

(−1)
p αp

22p
=

p−1
∑

k=1

(−1)
k−1 1

(2p − 2k + 1)!

αk

22k
−

p

(2p + 1)!

soit
p
∑

k=1

(−1)k−1 1

(2p − 2k + 1)!

αk

22k
=

p

(2p + 1)!
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En remplaçant αk par
1

2

24k

(2k)!
Bk, on obtient bien :

p
∑

k=1

(−1)
k−1

C2k
2p+12

2kBk = 2p

PARTIE V : Justification de l’interversion des signes
∑

.

V.1. vn =
n
∑

k=1

uk,p ; (vn) est croissante car uk,p > 0 ∀k, p ;

or uk,p 6 Sk, donc vn 6
n
∑

k=1

Sk 6 S ;

(vn) est donc majorée : elle converge vers Tp =
∑

n>1

un,p

V.2. Soit wp =
p
∑

k=1

Tk ; (wp) est croissante, et wp =
p
∑

k=1

∑

n>1

un,k =
∑

n>1

p
∑

k=1

un,k (il s’agit ici d’une somme finie de séries

convergentes)

Or
p
∑

k=1

un,k 6 Sn, donc wp 6
∑

n>1

Sn = S ; (wp) est croissante majorée : elle converge vers S′ 6 S.

Mais si on échange maintenant les 2 indices de un,p (en posant vn,p = up,n), le même raisonnement va aboutir à S 6 S′,

donc S = S′, CQFD.
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